

Parc éolien au large de la Bretagne Sud (AO5) – état actuel de l'environnement

Rapport final relatif au compartiment « Qualité de l'eau »

REVISIONS

Version	Date	Description	Auteurs	Relecteurs
V1	12/03/2025	Rapport Final	C. Feucher	F. LEVEQUE G. JACQ
V2	30/04/2025	Prise en compte des remarque d'Ifremer (partiellement) faute de temps par rapport aux exigences visvis de la publication du document.	de	F. LEVEQUE G. JACQ

COORDONNEES

Siège social	Directeur de projet	Responsable d'affaire
setec énergie environnement	Philippe BORNENS	Françoise LEVEQUE
Immeuble Central Seine 42 - 52 quai de la Rapée - CS 71230 75583 Paris cedex 12	358 ZA La Grande Halte 29940 La Forêt-Fouesnant	358 ZA La Grande Halte 29940 La Forêt-Fouesnant
Tél +33 1 82 51 55 55 Fax +33 1 82 51 55 56 environnement@setec.fr www.setec.fr	Tél. +33 (0)2 98 51 44 79 Mob. +33 (0)6 07 97 09 14 philippe.bornens@setec.com	Tél +33 (0)2 98 51 47 71 Mob +33 (0)6 31 40 54 07 francoise.leveque@setec.com

<u>Crédits</u>: Les photographies, les figures et les données présentées dans ce rapport ont été collectées et produites par Setec Energie Environnement (sauf mention particulière).

Sommaire

1.	Introduction		.7
2.	Matériels et méthodes		.8
	2.1 Principe		8
	2.2 Prélèvements et analyses de contaminants dans l'eau		8
	2.2.1 Stratégie spatiale d'échantillonnage	8	
	2.2.2 Fréquence d'acquisition et calendrier de réalisation	9	
	2.3 Échantillonneurs DGT et caging de moules		10
	2.3.1 Stratégie spatiale d'échantillonnage	10	
	2.3.2 Protocole initial	11	
	2.3.3 Fréquence d'acquisition et calendrier de réalisation	12	
	2.4 Moyens nautiques et matériels		18
	2.4.1 Moyens nautiques	18	
	2.4.2 Moyens matériels	19	
	2.5 Paramètres analysés et mesurés		23
	2.5.1 Qualité de l'eau	23	
	2.5.2 Profils verticaux à la sonde multiparamètre	25	
	2.5.3 Échantillonneurs DGT	26	
	2.5.4 Caging de moules	26	
	2.6 Analyse des données		30
	2.6.1 Analyse des résultats d'analyses sur échantillons d'eau	30	
	2.6.2 Analyses des mesures issues des sondes multiparamètres	30	
	2.6.3 Analyse des DGTs	30	
	2.6.4 Analyse des données de caging de moules	31	
3.	Résultats entre avril 2022 et mars 2023 : paramètres physico-chimiques et prélève	ments d'eau .:	32
	3.1 Paramètres physico-chimiques		32
	3.1.1 Évolution de la température	32	
	3.1.2 Évolution de la salinité	34	
	3.1.3 Évolution de la concentration et de la saturation en oxygène	36	
	3.1.4 Évolution de la fluorescence, proxy de la chlorophylle a	40	
	3.1.5 Évolution de la turbidité et des matières en suspension		
	3.2 Autres paramètres analysés par Eurofins		46
	3.2.1 Résultats pour la campagne d'avril 2022	48	
	3.2.2 Résultats pour la campagne de mai 2022		
	3.2.3 Résultats pour la campagne de juin 2022		
	3.2.4 Résultats pour la campagne de juillet 2022		
	3.2.5 Résultats pour la campagne d'août 2022		
	3.2.6 Résultats pour la campagne de septembre 2022		
	Control of the contro		

7	Δι	nneves	100
6.	Bi	ibliographie	99
5.	Sy	ynthèse et Perspectives	98
	4.2	2 Résultats pour les moules	97
	4.1	1 Résultats pour les échantillonneurs DGT	86
4.	R	ésultats pour les mesures des échantillonneurs DGT et des caging de moules	86
		3.3.3 Autres paramètres mesurés et valeurs seuils	84
		3.3.2 Évolution saisonnière des éléments nutritifs	82
		3.3.1 Paramètres hydrologiques	82
	3.3	3 Synthèse des résultats et éléments de discussion	82
		3.2.12 Résultats pour la campagne de mars 2023	79
		3.2.11 Résultats pour la campagne de février 2023	76
		3.2.10 Résultats pour la campagne de janvier 2023	73
		3.2.9 Résultats pour la campagne de décembre 2022	70
		3.2.8 Résultats pour la campagne de novembre 2022	67
		3.2.7 Résultats pour la campagne d'octobre 2022	64

Liste des figures

Figure 1 : Localisation des stations d'échantillonnage « Qualité de l'eau ».	8
Figure 2 : Localisation des stations d'échantillonnage des capteurs DGT	10
Figure 3 : Schéma initial du mouillage pour la pose	12
Figure 4 : Version initiale du système de caging (V1) sur le pont et à la mise à l'eau.	14
Figure 5 : Deuxième version du système de caging (V2).	14
Figure 6 : Photos des cages confectionnées avant mise à l'eau	15
Figure 7 : Troisième version du système de caging installée sur PMT02 le 16/11/2024	16
Figure 8 : Le « Minibex » lors de la campagne de mars 2023 et le « Sterenn Red » lors de la campagne de janvier 2023	18
Figure 9 : Poste de travail pour la qualité de l'eau lors de la campagne de mars 2023 : poulie de mise à l'eau, bouteille Nisk son support et flaconnages Eurofins.	
Figure 10 : Sonde WIMO Plus (source : NKE)	20
Figure 11 : Comparaison des mesures à la sonde EXO et WIMO	21
Figure 12 : Composition d'un DGT pour les composants métalliques	22
Figure 13 : Évolution de la température (°C) à chaque station entre avril 2022 et mars 2023	33
Figure 14 : Évolution de la salinité (PSU) à chaque station entre avril 2022 et mars 2023.	35
Figure 15 : Évolution de la concentration en oxygène (mg/L) à chaque station entre avril 2022 et mars 2023	37
Figure 16 : Évolution de la saturation en oxygène (%) à chaque station entre avril 2022 et mars 2023	39
Figure 17 : Évolution de la fluorescence (ppb) à chaque station entre avril 2022 et mars 2023	41
Figure 18 : Évolution de la turbidité (NTU) à chaque station entre avril 2022 et mars 2023	43
Figure 19 : Évolution de la teneur en matières en suspension (mg/L) entre avril 2022 et mars 2023	44
Figure 20 : Évolution des concentrations moyennes en azote inorganique (orange), ammonium (bleu), nitrites (gris), nitrates (jet orthophosphates (bleu clair) entre avril 2022 et mars 2023.	,
Liste des tableaux	
Tableau 1 : Calendrier de réalisation des campagnes entre avril 2022 et mars 2023.	g
Tableau 2 : Synthèse des interventions réalisées pour les échantillonneurs DGT	13
Tableau 3 : Synthèse des interventions réalisées pour le caging de moules.	17
Tableau 4 : Paramètres analysés pour la qualité de l'eau - limite de quantification, méthode d'analyse, type et valeur du se qualité environnementale.	
Tableau 5 : Paramètres analysés pour la qualité de l'eau - limite de quantification, méthode d'analyse et intervalles des différ classes de qualité	
Tableau 6 : Limites de quantification et méthodes d'analyse pour les paramètres analysés sur les échantillonneurs DGT	26
Tableau 7 : Conversion des seuils en poids sec à partir des seuils en poids lipidique et poids humide (ou poids frais)	27
Tableau 8 : Limites de quantification et méthodes d'analyse pour les paramètres analysés sur chair de moule	28
Tableau 9 : Code couleur pour la comparaison aux seuils.	46
Tableau 10 : Code couleur pour la comparaison aux classes d'état pour les paramètres biologiques et les nutriments	47

Tableau 11 : Résultats des analyses de la campagne d'avril 2022.	. 48
Tableau 12 : Résultats des analyses de la campagne de mai 2022	. 50
Tableau 13 : Résultats des analyses de la campagne de juin 2022.	. 52
Tableau 14 : Résultats des analyses de la campagne de juillet 2022	. 55
Tableau 15 : Résultats des analyses de la campagne d'août 2022.	. 58
Tableau 16 : Résultats des analyses de la campagne de septembre 2022	. 61
Tableau 17 : Résultats des analyses de la campagne d'octobre 2022.	. 64
Tableau 18 : Résultats des analyses de la campagne de novembre 2022.	. 67
Tableau 19 : Résultats des analyses de la campagne de décembre 2022.	. 70
Tableau 20 : Résultats des analyses de la campagne de janvier 2023	. 73
Tableau 21 : Résultats des analyses de la campagne de février 2023.	. 76
Tableau 22 : Résultats des analyses de la campagne de mars 2023	. 79
Tableau 23 : Rapports moyens N/Si/P et écart-type associé d'avril 2022 à mars 2023 à partir des résultats d'azote inorgan dissous, de silicium et d'orthophosphates.	
Tableau 24 : Concentration de métaux Ce dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs imme (unités en (µg/L) pour la campagne du printemps 2024	-
Tableau 25 : Concentration de métaux Ce dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs imme (unités en (µg/L) pour la campagne d'été 2024	-
Tableau 26 : Concentration de métaux Ce dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs imme (unités en (µg/L) pour la campagne d'automne 2024	
Tableau 27 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentration métaux C _e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne printemps 2024 (unités en (µg/L).	e du
Tableau 28 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentration métaux C _e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne d'été 2 (unités en (μg/L).	
Tableau 29 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentration métaux C _e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne d'auto 2024 (unités en (μg/L)	mne
Tableau 30 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentration métaux C _e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne printemps 2024 (unités en (μg/L). Les valeurs « anormales » ont été retirées	e du
Tableau 31 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentration métaux C _e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne d'été 2 (unités en (μg/L). Les valeurs « anormales » ont été retirées.	2024
Tableau 32 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentration métaux C _e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne d'auto 2024 (unités en (μg/L). Les valeurs « anormales » ont été retirées.	mne
Tableau 33 : Concentration de métaux C _{DGT} dans l'eau (unités en (ng/L) pour les trois campagnes (printemps, été et automne 20	,
	. 96

1. INTRODUCTION

Ce document constitue le rapport à 1 an de l'état actuel de l'environnement relatif au compartiment « Qualité de l'eau » de la zone du projet de parc éolien flottant au large de la Bretagne Sud (AO5). Il présente les données obtenues pendant la première année d'acquisition de données, d'avril 2022 à mars 2023.

L'objectif est de déterminer l'état initial du compartiment « Qualité de l'eau » afin de permettre au futur lauréat de la procédure de mise en concurrence d'évaluer l'impact du parc éolien sur ce compartiment durant les phases de vie du projet.

De plus, l'objectif est également de valoriser l'état initial pour caractériser l'état de référence ; ainsi l'état initial comporte des stations de référence (stations témoins) qui sont positionnées, dans les plans d'échantillonnage proposés ci-après, à l'extérieur de la zone d'étude immédiate, en dehors de la zone d'influence présumée du projet. Le protocole s'inscrit dans une analyse de type BACI (Before-After-Control-Impact), avec la définition de stations témoins.

L'analyse des contaminants chimiques dans l'eau se fait de manière ponctuelle via les prélèvements d'eau, mais aussi via des suivis dits « intégrateurs » avec la mise en place de DGT (Diffusive Gradient Thin films) et de caging de moules sur un réseau de deux stations.

L'objectif des acquisitions de données liées au compartiment « qualité de l'eau » est de caractériser la qualité physico-chimique des masses d'eau et leur variabilité dans le temps.

2. MATÉRIELS ET MÉTHODES

2.1 PRINCIPE

L'étude du compartiment « Qualité de l'eau » consiste au suivi d'un réseau de stations, au moyen d'une sonde multiparamètre et de prélèvements d'eau avec une bouteille Niskin téflonnée.

L'analyse des contaminants chimiques dans l'eau se fait de manière ponctuelle via les prélèvements d'eau, mais aussi via des suivis dits « intégrateurs » avec la mise en place de DGT (Diffusive Gradient Thin films) et de caging de moules sur un réseau de deux stations.

2.2 PRELEVEMENTS ET ANALYSES DE CONTAMINANTS DANS L'EAU

2.2.1 Stratégie spatiale d'échantillonnage

La stratégie d'échantillonnage repose sur le suivi mensuel de neuf stations ponctuelles et se décompose de la manière suivante, comme illustrée sur la figure ci-dessous :

- 3 stations dans la zone d'étude immédiate au sein de la zone A (dont 2 dans la zone d'appel d'offres);
- 2 stations dans la zone d'étude immédiate au sein de la zone B ;
- 4 stations dans la zone d'étude rapprochée (2661 km² zone tampon de 20 km autour de la zone d'étude immédiate), qui sont des stations de référence.

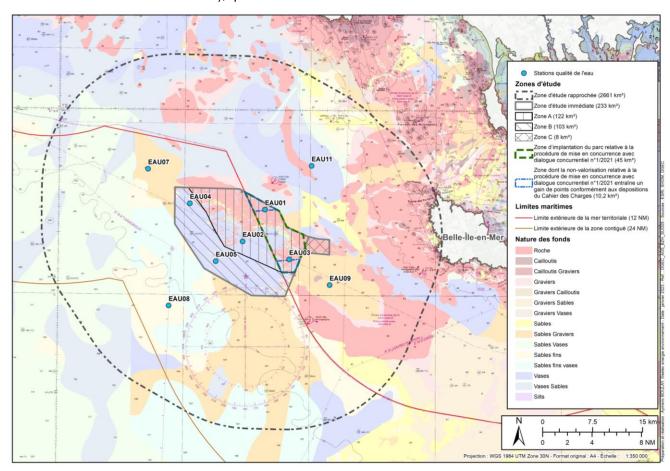


Figure 1 : Localisation des stations d'échantillonnage « Qualité de l'eau ».

Le plan d'échantillonnage initial se composait de 11 stations de suivi, avec deux stations supplémentaires, la station EAU06 au nord-ouest de la station EAU07 et la station EAU10 au sud-est de la station EAU09, conformément aux premiers échanges avec lfremer. Ce dernier a finalement suggéré la suppression des 2 stations les plus éloignées, EAU06 et EAU10, d'où la numérotation actuelle des stations de EAU01 à EAU11 sans EAU06 et EAU10.

Dans la zone d'étude, les courants sont globalement orientés ouest-nord-ouest. Ainsi, plusieurs stations ont été positionnées selon l'axe des courants dominants sur le site, en traversant la zone d'étude immédiate de manière à couvrir la zone d'influence du projet de parc. D'autres stations ont été positionnées perpendiculairement à l'axe dominant des courants de manière à se situer hors zone d'influence.

Les stations de prélèvements du compartiment « Qualité de l'eau » sont identiques aux stations de prélèvements des compartiments « Plancton » et « Poissons, Mollusques et Crustacés » pour la partie sur l'identification de zones fonctionnelles via l'étude de l'ichtyoplancton.

2.2.2 Fréquence d'acquisition et calendrier de réalisation

Le suivi de ce réseau de stations est réalisé tous les mois sur une durée initiale d'une année.

Toutes les campagnes programmées pour ce suivi ont été réalisées. Les dates des campagnes sont précisées dans le tableau suivant (avril 2022 à mars 2023) :

Tableau 1 : Calendrier de réalisation des campagnes entre avril 2022 et mars 2023.

ID campagne	Dates	
1	25 avril 2022	
2	13 et 14 mai 2022	
3	14 et 15 juin 2022	
4	11 et 12 juillet 2022	
5	22 et 23 août 2022	
6	20 et 21 septembre 2022	
7	11 et 12 octobre 2022	
8	12 et 13 novembre 2022	
9	03 et 04 décembre 2022	
10	20 janvier 2023	
11	10 février 2023	
12	06 et 07 mars 2023	

2.3 ÉCHANTILLONNEURS DGT ET CAGING DE MOULES

2.3.1 Stratégie spatiale d'échantillonnage

La stratégie d'échantillonnage concernant les DGTs et le caging de moules repose sur le suivi de deux stations ponctuelles et se décompose de la manière suivante, comme illustrée sur la figure ci-dessus :

- 1 station dans la zone d'étude immédiate au sein de la zone A ;
- 1 station dans la zone d'étude rapprochée (2661 km² zone tampon de 20 km autour de la zone d'étude d'immédiate), qui est une station de référence.

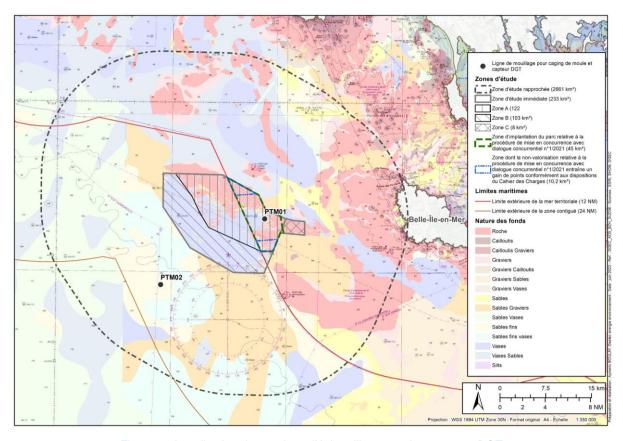


Figure 2 : Localisation des stations d'échantillonnage des capteurs DGT et du caging de moules.

2.3.2 Protocole initial

Le protocole initial concernant les caging de moule et les échantillonneurs DGT est présenté ci-après.

Le caging de moules est opéré à l'aide de poches de moules fixées sur une ligne de mouillage dédiée et constituée de la manière suivante, de la surface jusqu'au fond :

- Une bouée de surface ;
- Un bout lesté de 15 m de longueur environ sur lequel sont positionnées 8 poches de moules sur 2 niveaux (un 1^{er} niveau vers 9-10 m de profondeur, et un 2^e niveau vers 12-15 m de profondeur). Les poches de moules regroupées par 4 sont positionnées de part et d'autre du bout;
- De la chaîne si nécessaire pour lester le bout supérieur ;
- Du bout ;
- De la chaîne mère avec un corps-mort sur le fond.

La moule commune *Mytilus* edulis est le modèle biologique utilisé, en raison des facilités d'approvisionnement, de sa robustesse et de la bonne connaissance de cette espèce. Les moules sont originaires de filières en mer de Groix.

Pour garantir l'homogénéité des lots, une taille de 50 mm correspondant à de jeunes adultes d'environ 18 mois doit être respectée à plus ou moins à 5 millimètres. Les moules sont conditionnées dans des poches ostréicoles de 2,5 kg environ.

Le nombre de poches de moules prévues est de 9 :

- 1 poche de 2,5 kg qui n'est pas immergée et qui est envoyée en analyses pour établir un état zéro de la contamination dans le lot de moules de Groix utilisé pour le suivi (T0) ;
- 2 x 4 poches de 2,5 kg chacune qui sont positionnées sur la ligne de mouillage¹: 4 des 8 poches sont analysées après 3 mois de pose (T0 + 3 mois), et les 4 autres poches sont analysées après 6 mois de pose (T0 + 6 mois), ceci afin d'évaluer l'éventuelle décontamination naturelle des poches. À chaque campagne d'analyses, un mélange est effectué entre les 2 poches de la profondeur 7-9 m et les 2 poches de la profondeur 11-13 m.

La ligne de mouillage utilisée pour fixer les moules sert également de support pour les capteurs DGT. Ces derniers sont fixés sur le bout lesté supportant les poches de moules, à une profondeur d'environ 3-4 m (les échantillonneurs DGT sont ainsi fixés au-dessus des poches de moules pour les rendre plus accessibles et faciliter leur pose et leur relève qui se font à une fréquence plus importante que la pose et la relève des poches de moules).

Une bouée de surface identifiée avec un code est mise en œuvre pour signaler la présence de la ligne de mouillage et l'identifier. La bouée est équipée d'un réflecteur radar et d'une balise GPS, pour prévenir des risques de collision avec un navire.

La figure ci-dessous présente le schéma initial de la ligne de mouillage (version V1) pour la pose des caging de moules et des échantillonneurs DGT.

¹ Les poches seront quadruplées et réparties entre 2 profondeurs (vers 3-4 m et vers 8-10 m) par précaution, afin d'augmenter les chances d'avoir suffisamment de moules à l'issue des 3 et 6 mois en tenant compte de la prédation et de la mortalité naturelle.

11

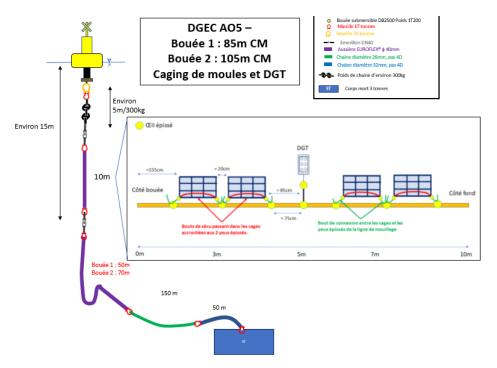


Figure 3 : Schéma initial du mouillage pour la pose des cages de moule et des échantillonneurs DGT.

2.3.3 Fréquence d'acquisition et calendrier de réalisation

2.3.3.1 Échantillonneurs DGT

Les échantillonneurs DGT sont déployés en triplicat, conformément aux recommandations de Millan et al. (2022). Une période d'exposition de 7 jours est recommandée, pouvant être étendue à 10 ou 15 jours si nécessaire, voire plus longtemps en milieux offshore si les concentrations en métaux dans l'eau sont faibles et surtout s'il y a peu ou pas de biofouling tel que préconisé dans les documents de DGT Research. En plus des capteurs immergés, trois témoins "blancs terrain" sont exposés à l'air libre sur le site, et trois témoins "blancs laboratoire" sont conservés au laboratoire sans exposition, tels que reçus.

La réalisation des campagnes DGTs s'effectue en 3 étapes distinctes :

- 1) Préparation des DGTs à immerger (J-1): la préparation des DGTs consiste à fixer 2 triplicat de DGT à immerger sur un support qui sera fixé à la ligne de mouillage. Cette opération s'effectue la veille en laboratoire et sous atmosphère stérile. Lors de cette étape, des DGTs dits « blancs terrain » sont exposés à l'air libre.
- 2) Immersion des DGTs: l'opération d'immersion des DGTs se réalise sur une journée. L'opérateur se rend sur la station la plus au Large (PMT02) et installe le support des DGT sur le mouillage. Les blancs terrain sont de nouveau exposés à l'air libre puis reconditionnés. L'opérateur procède ensuite à un prélèvement d'eau à la bouteille Niskin, ainsi qu'à une mesure de la température et de la salinité à l'aide d'une sonde multiparamètre. Cette opération est ensuite répétée sur le second point PMT01. De retour à quai les échantillons d'eau sont envoyés en laboratoire pour en mesurer la concentration en Carbone Organique Dissous (COD) et les blancs terrain sont remis au frigo à 4°C, à côté des blancs laboratoire.
- 3) Récupération des DGTs: la récupération des DGTs se fait environ 7 jours après leur immersion. L'opérateur se rend de nouveau au point le plus au large (PMT02) pour y récupérer le support des DGTs immergé. Les blancs terrain sont également exposés le temps de la manipulation et sont reconditionnés en même temps que les DGTs immergés. Des mesures à la sonde et des prélèvements d'eau sont à nouveau réalisés à la profondeur d'immersion (10 m). L'opération est

ensuite répétée sur le second point PMT01. De retour à quai, l'ensemble de DGT (blancs laboratoire, blancs terrain et DGTs immergés) et les prélèvements d'eau sont envoyés en laboratoire pour analyse.

Des mesures complémentaires de paramètres hydrologiques in situ sont nécessaires pour le calcul des concentrations et leur interprétation : température, salinité, heure et date lors du déploiement et de la récupération. Ces données issues de sondes multiparamètres sont consignées lors des déploiements et récupérations des DGTs.

On effectue également un prélèvement d'eau à profondeur d'immersion pour en quantifier le COD (Carbone Organique Dissous) afin d'évaluer si d'une campagne à une autre la spéciation des métaux peut être affectée par la présence de COD. Ce prélèvement est réalisé à l'aide d'une bouteille Niskin téflonnée.

Les trois campagnes d'immersion des DGTs réalisées en 2024 sont précisées dans le tableau ci-dessous. À partir de la deuxième campagne d'août 2024, l'exposition des blancs terrain n'a été effectuée que sur la station PMT02, dite de référence.

Date Interventions Temps d'immersion Immersion des DGTs sur les deux stations avec exposition des PMT01: 5 jours et 18 18/05/2024 blancs terrain heures. PMT02: 5 jours et 17 24/05/2024 Récupération des DGTs heures. Immersion des DGTs sur les 2 stations avec exposition des blancs PMT01: 7 jours et 22 30/08/2024 terrain sur PMT02 seulement heures. PMT02: 7 jours et 22 Récupération des DGTs avec exposition des blancs terrain sur 07/09/2024 PTM02 heures. Immersion des DGTs sur les 2 stations avec exposition des blancs 16/11/2024 PMT01: 11 jours et terrain sur PMT02 seulement 21 heures. Récupération des DGTs : pas de DGT retrouvé sur PMT02 et PMT02: échantillons membranes des DGTs retrouvées endommagées sur PMT01. 28/11/2024 perdus. Exposition des blancs terrain sur PMT02 seulement

Tableau 2 : Synthèse des interventions réalisées pour les échantillonneurs DGT.

Les conditions météocéaniques et l'état de mer peuvent parfois rendre difficiles l'accès et le travail sur la zone, ce qui oblige parfois à avancer ou repousser la date de récupération des DGTs. Ce fut le cas pour la campagne d'été où la récupération a été avancée de deux jours, et celle d'automne repoussée de 5 jours. Malgré ces adaptations, les temps d'exposition effectivement appliqués respectent les recommandations lfremer.

2.3.3.1 Caging de moules

La mise en œuvre du protocole de caging de moules a généré plusieurs difficultés techniques. Malgré les précautions qui ont été prises pour fixer les cages de moules, celles-ci ont été détruites. Il n'a pas été possible de récupérer des moules vivantes.

Après ce constat, le système de caging a été repensé dans le but de le rendre plus robuste. Une seconde version a été déployée pour un nouvel essai, mais celui-ci a également échoué, empêchant toute récupération de moules vivantes. Un troisième et dernier essai a ensuite été réalisé, aboutissant à la mise en place de la version actuelle du système de caging. Les différentes évolutions de ces systèmes sont détaillées ci-après.

• Premier essai de mise à l'eau – première version du système de caging (V1) :

La Figure 4 montre les cages de moules préparées pour la mise à l'eau. Les cages sont placées sur le mouillage et sont solidaires de la ligne de mouillage sur une section de 10 m. Cette configuration nécessite soit une relève du mouillage, soit une intervention de plongeurs pour leur installation et leur récupération.

La destruction des cages serait due aux efforts répétés de la houle, qui auraient engendré leur entrechoquement.

Figure 4 : Version initiale du système de caging (V1) sur le pont et à la mise à l'eau.

Deuxième essai – deuxième version du système de caging (V2) :

Pour le deuxième essai, il a été décidé de tester une nouvelle configuration. Les cages de moules initiales ont été remplacées par des cages industrielles conçues par Nodusfactory Ostrea, une entreprise spécialisée dans l'accastillage de pêche.

Deux séries de trois cages ont été fixées aux flotteurs de la bouée à l'aide d'un mousqueton, suivi d'un bout gainé afin de prévenir l'abrasion (Figure 5). Ce bout a été divisé en deux par une patte d'oie, permettant un passage de part et d'autre de trois cages superposées. Une seconde patte d'oie assure le lestage et le maintien des cages en position.

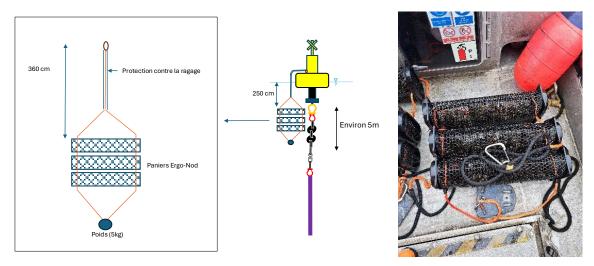


Figure 5 : Deuxième version du système de caging (V2).

Cette configuration permet aux cages d'être libres, à environ 2,5 mètres sous la surface, tout en évitant les chocs avec le mouillage principal et en réduisant la tension excessive qui avait conduit à la détérioration de la première version.

Pour ce deuxième essai, une seule série de trois cages ont été installées sur chacune des stations.

Malheureusement, ce système a aussi échoué. Aucune cage n'a été retrouvée sur PMT02, et il n'en restait qu'une seule endommagée et vide sur PMT01 (Figure 6). Leur perte pourrait être due aux efforts exercés par les lests des lignes.

Figure 6 : Photos des cages confectionnées avant mise à l'eau (de couleur noire et en bon état) et de la seule cage récupérée sur PMT01 (endommagé et vide).

Troisième essai – troisième version du système de caging (V3) :

À la suite des échecs des précédentes versions du système de caging et de l'identification des potentielles faiblesses, de nouvelles modifications ont été apportées et deux autres systèmes de caging ont été fabriqués.

Pour le premier système de caging, dans le but de réduire les efforts sur les paniers, une barre a été installée au-dessus de la cage afin de mieux répartir la tension de traction. La patte d'oie soutenant le leste a été retirée, et chaque bout traversant a été lesté indépendamment. Cette configuration permet d'assurer une traction plus linéaire et de limiter les forces appliquées sur les cages.

Le deuxième système de caging se compose d'un sac à larges mailles contenant les nasses. Il est fixé à la patte d'oie par deux bouts passés en aller-retour à travers les mailles de chaque côté du sac. Deux lestes de 0,8 kg sont intégrés à l'intérieur, à la base du sac. L'avantage de cette version réside dans sa souplesse, réduisant ainsi les risques de rupture liés aux contraintes de traction.

Pour ce troisième essai, le premier et le deuxième système de caging ont été installés sur la bouée de la station PMT02 (Figure 7). Seul le premier système de caging a été installé sur la bouée de la station PMT01.

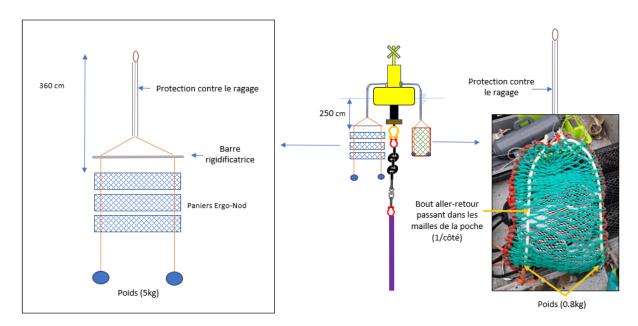


Figure 7 : Troisième version du système de caging installée sur PMT02 le 16/11/2024 Sur PMT01, seul le système de droite a été installé.

Une vérification des structures a été faite 12 jours après leur installation, le 28 novembre 2024. Il a été constaté que le système installé sur PMT01 était intact, tandis qu'un seul des deux systèmes était toujours en place sur PMT02. L'opérateur n'a toutefois pas pu identifier lequel des deux était toujours en place. La présence des cages sur PMT01 après 12 jours suggère que les modifications apportées au montage ont permis d'améliorer sa durabilité.

À la date de rédaction de ce rapport, il n'a pas été possible de vérifier l'état des lignes en raison des conditions de mer hivernales qui ont empêché d'approcher les bouées en toute sécurité.

Seule la réalisation des campagnes T0 de caging de moules a pu être effectuée à ce jour et elle s'effectue en 3 étapes distinctes :

- 1) Récupération des moules à bord : les moules doivent être récupérées auprès des mytiliculteurs. Idéalement, elles sont prélevées le jour de leur mise en cage afin d'optimiser leur survie, bien qu'une récupération la veille soit possible. Le mytiliculteur a en amont collecté, calibré et réparti les moules dans 32 nasses de 1,25 kg chacune. De plus, un échantillon de 3 kg est conservé au réfrigérateur à bord pour une analyse en laboratoire. Une fois les nasses chargées, elles sont placées dans les 8 cages prévues sur les mouillages, à raison de 4 nasses par cage;
- 2) Pose du mouillage et immersion des moules à chaque station : le navire arrive sur zone et prépare le pont pour la mise à l'eau. Le mouillage est immergé en veillant à éviter toute tension sur la section supportant les cages de moules.
- 3) Envoie des échantillons T0 : de retour à quai, les moules conservées à bord sont transportées en glacière jusqu'aux locaux de setec énergie environnement. Environ 30 à 40 individus sont envoyés chez Eurofins pour une analyse biométrique, tandis que le reste de l'échantillon est acheminé vers le laboratoire Labocéa pour une analyse chimique. Conformément aux recommandations d'Ifremer, la température est restée inférieure à 10°C tout au long du transport et du stockage, jusqu'à l'arrivée des échantillons en laboratoire.

Les interventions concernant le caging de moules sont synthétisées dans le tableau ci-dessous.

Tableau 3 : Synthèse des interventions réalisées pour le caging de moules.

Date	Interventions
	T0 (1er essai) : récupération des moules sur les filières de Groix.
19/01/2024	Installation d'une partie des moules en cages sur les 2 stations et le reste des moules envoyées au laboratoire pour analyses.
24/05/2024	T0 + 3 mois : cages détruites et arrachées. Aucun individu retrouvé sur PMT02 et quelques moules mortes retrouvées sur PMT01.
	T0 (2 ^e essai) : récupération des moules sur les filières de Groix.
25/07/2024	Installation d'une partie des moules en cages sur les 2 stations et le reste des moules envoyées au laboratoire pour analyses.
30/08/2024	Vérification de l'état des cages lors de la pose des DGTs, mais aucune cage n'a été retrouvée sur PMT02 et seulement une sur PMT01.
	T0 (3 ^e essai) : récupération des moules sur les filières de Groix.
16/11/2024	Installation d'une partie des moules en cages sur les 2 stations et le reste des moules envoyées au laboratoire pour analyses
	Vérification de l'état des cages lors de la pose des DGTs.
28/11/2024	Cage en place sur PMT01.
	Une seule des deux cages est en place sur PMT02.

2.4 MOYENS NAUTIQUES ET MATERIELS

2.4.1 Moyens nautiques

Le navire Minibex de la société SAAS (Ship As A Service) Offshore SAS est utilisé pour les relevés à la sonde multiparamètre et les prélèvements d'eau à la bouteille Niskin (en haut sur la figure ci-dessous). Ce navire hauturier armé en 1^{re} catégorie présente l'équipement nécessaire en termes de navigation, de sécurité et d'équipements techniques pour la réalisation de la mission. L'indisponibilité du Minibex pour la réalisation de la campagne d'avril 2022, de janvier & février 2023, a nécessité l'implication d'un autre bateau de la société SAAS, Le Sterenn Red (en bas sur la figure ci-dessous).

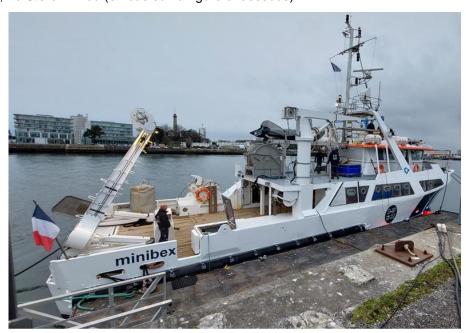


Figure 8 : Le « Minibex » lors de la campagne de mars 2023 et le « Sterenn Red » lors de la campagne de janvier 2023.

2.4.2 Moyens matériels

2.4.2.1 Bouteille Niskin

Au niveau de chaque station de suivi, des prélèvements d'eau sont réalisés à la bouteille Niskin de 5 litres téflonnée (Figure 9). Les prélèvements sont réalisés en subsurface (entre 2 et 5 m de profondeur).

Figure 9 : Poste de travail pour la qualité de l'eau lors de la campagne de mars 2023 : poulie de mise à l'eau, bouteille Niskin sur son support et flaconnages Eurofins.

Les échantillons d'eau prélevés à la bouteille Niskin sont recueillis dans des flacons adaptés et fournis par le laboratoire d'analyses Eurofins (Eurofins Analyses pour l'Environnement 5 rue d'Otterswiller – 67700 Saverne). Après prélèvement, les échantillons sont conservés dans une armoire frigorifique à bord du bateau jusqu'au retour au port. La mission achevée, les échantillons sont placés dans des glacières isothermes auxquelles sont ajoutés des pains de glace. Les échantillons sont ensuite expédiés sans délai au laboratoire pour analyses.

2.4.2.2 Sonde multiparamètre

Au niveau de chaque station, des profils verticaux de mesures sont également réalisés à la sonde multiparamètre. La sonde est lestée afin d'assurer la plus grande verticalité des mesures puis descendue jusqu'à la proximité du fond avant d'être remontée en surface. Le paramétrage de la sonde permet l'enregistrement de ces paramètres à une fréquence de quelques secondes pendant son déploiement. Ainsi, pour chaque station de prélèvement, la mesure est effectuée sur un profil descendant et un profil ascendant parcourant l'ensemble de la colonne d'eau (surface/fond/surface).

La sonde employée est la WIMO (constructeur NKE) représentée sur la figure ci-dessous.

Figure 10: Sonde WIMO Plus (source: NKE).

Au fur et à mesure des missions, la fiabilité des mesures a été améliorée notamment en vérifiant sur le terrain l'allure des profils pour vérifier les données et changer de sonde au besoin. Les sondes utilisées sont étalonnées annuellement suivant les recommandations du constructeur. En complément, des tests fonctionnels et des mesures par comparaison permettent de qualifier le bon fonctionnement de nos sondes avant chaque utilisation. Les processus d'étalonnage et de vérification des sondes font l'objet d'une amélioration continue, et des discussions ont notamment été entamées avec le Laboratoire Nationale de Métrologie et d'Essaies (LNE) à ce sujet.

Une autre sonde, l'EXO3 de YSI, a exceptionnellement été utilisée en septembre 2022 en raison de l'indisponibilité de la sonde WIMO. Une comparaison des valeurs mesurées avec ces différentes sondes a été faite à l'occasion d'une mesure ponctuelle sur le terrain. La figure ci-dessous compare les profils de chlorophylle, d'oxygène dissous (concentration et saturation), de salinité, de température et de turbidité mesurés entre les sondes WIMO et EXO. Lors de ces mesures, la sonde EXO n'était pas équipée du capteur de chlorophylle et la mesure de ce paramètre n'a été faite qu'avec la sonde WIMO.

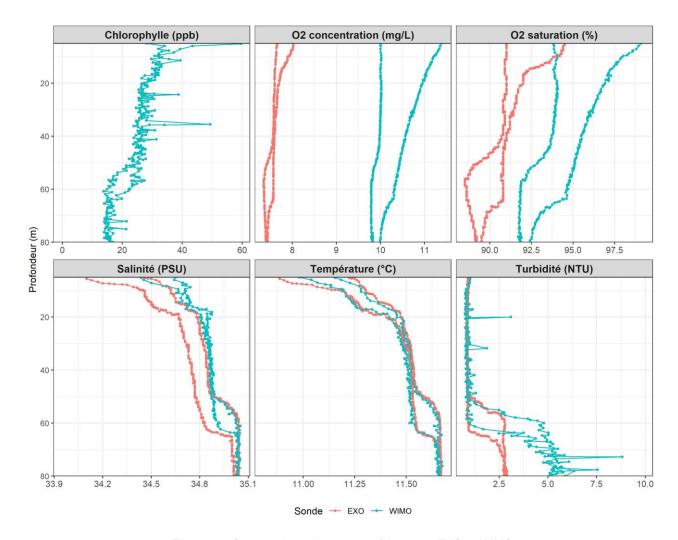


Figure 11 : Comparaison des mesures à la sonde EXO et WIMO pour les paramètres de température, salinité, turbidité, oxygène dissous (concentration et saturation) et chlorophylle.

Avant toute comparaison, il est à noter que ces profils ont été réalisés en un point donné dans le temps et dans l'espace et reflètent des conditions physiques particulières observables au moment de la mesure. En particulier, les profils de la figure précédente mettent en évidence un évènement entre 50 et 65 mètres de profondeur où l'on observe un important gradient de température et de salinité, avec également des divergences entre les profils ascendants et descendants. De même à proximité de la surface jusqu'à 20 m de profondeur, une thermocline est observée et associée à de forts gradients de température de salinité, et d'oxygène dans une moindre mesure. Les fortes variations des paramètres à ces profondeurs peuvent être mal mesurées si le profil est fait trop rapidement, car le capteur n'a pas le temps de s'ajuster pour une mesure précise des valeurs.

En dehors de ces observations, la comparaison des paramètres mesurés entre la sonde EXO et WIMO montre que les valeurs sont plutôt cohérentes pour la température. La différence moyenne sur la colonne d'eau est de 0,01°C pour la température. En ce qui concerne la turbidité, les valeurs de la surface à 50 m de profondeur sont très proches entre la WIMO et l'EXO, mais une différence d'environ 2,5 NTU est observée au-delà de 50 m. La turbidité mesurée avec la sonde EXO aurait tendance à être plus faible par rapport à celle mesurée avec la sonde WIMO. Les différences de mesures constatées pour l'oxygène sont très importantes (de l'ordre de 5 mg/L). En ce qui concerne la salinité, la différence moyenne sur la colonne d'eau est de 0,08 PSU pour la salinité. Un doute peut être émis sur les mesures de salinité faites à la sonde EXO en particulier lorsque de forts gradients de salinité (ex. dans la thermocline). Les données de salinité au niveau de la thermocline ont donc été écartées des profils pour cette sonde (Figure 14).

Cette comparaison met en évidence l'importance de la calibration des capteurs qui n'aurait pas été faite de manière optimale pour ce test et qui aurait engendrée des différences de mesures importantes entre les sondes EXO et WIMO. Hormis pour la température, ces résultats ne permettent pas de conclure quant à la qualité des mesures de ce test sans pour autant remettre en question les profils réalisés pour ce suivi qui restent perfectibles mais exploitables. Aucune correction n'a été appliquée sur les profils. Ce point fera l'objet d'une attention particulière pour la suite des études sur la qualité de l'eau dans le domaine de l'éolien offshore.

2.4.2.3 Échantillonneurs DGT

Conformément aux recommandations de l'Ifremer, le suivi des éléments traces métalliques est effectué au moyen d'échantillonneurs passifs appelés DGT (Diffusive Gradient in Thin films).

Le capteur DGT est un capteur intégratif. Il consiste en un dispositif plastique qui accumule les substances dissoutes dans l'eau, fournissant la concentration *in situ* intégrée pendant la durée de son déploiement. Il se compose d'une base plastique et d'un bouchon circulaire avec une ouverture (fenêtre DGT). Comme le montre la figure suivante, plusieurs éléments sont empilés sur la base : une couche de résine, une couche de gel diffusif et une membrane filtrante. Le bouchon est ensuite placé sur l'ensemble. Les éléments échantillonnés passent par le filtre à membrane et le gel diffusif, et sont accumulés dans la résine de manière contrôlée (par le flux diffusif).

Figure 12 : Composition d'un DGT pour les composants métalliques (source : Projet MONITOOL).

Les DGTs sont des capteurs passifs extrêmement sensibles à la moindre contamination pouvant provenir de l'air ou de tous autres matériaux pouvant entrer en contact avec ceux-ci. Il convient au personnel technique de suivre les recommandations de l'Ifremer. Le personnel a suivi une formation « DGT » auprès de l'Ifremer. Le personnel technique suit également toutes les recommandations d'usage énoncées dans les documents suivants :

- Guide d'utilisation des techniques d'échantillonnage passif (DGT, POCIS et SBSE): mise en place, récupération et conditionnement (Gonzalez, 2020)²;
- Guide des bonnes pratiques pour l'utilisation des DGTs (Millan et al., 2022);

²https://ccem.ifremer.fr/content/download/148717/file/Guide%20utilisation%20EP%20en%20cours%20de%20mise%20%C3% A0%20jour.pdf

• Tutoriels pour la mise en œuvre opérationnelle des échantillonneurs passifs pour la mesure des contaminants métalliques et organiques en milieu marin (Gonzalez et al., 2020).

2.5 PARAMETRES ANALYSES ET MESURES

2.5.1 Qualité de l'eau

Une cinquantaine de paramètres est analysée par le laboratoire Eurofins. Ils sont présentés dans le tableau suivant avec les limites de quantification et les seuils de qualité environnementale (NQE) lorsqu'ils existent :

- Les seuils NQE-MA: pour les substances dites "prioritaires" et "prioritaires dangereuses" de la Directive Cadre sur l'Eau (DCE); Norme de Qualité Environnementale en Moyenne Annuelle, applicable dans les eaux de surfaces côtières et de transition visant la protection de l'environnement et de la santé humaine.
- Les seuils NQE-CMA: pour les substances dites "prioritaires" et "prioritaires dangereuses" de la DCE; Norme de Qualité Environnementale en Concentration Maximale Admissible réglementaire, applicable dans les eaux de surface côtières et de transition visant la protection de l'environnement et de la santé humaine.

Tableau 4 : Paramètres analysés pour la qualité de l'eau - limite de quantification, méthode d'analyse, type et valeur du seuil de qualité environnementale³.

	Paramètre	Limite de quantification laboratoire*	Méthode d'analyse	NQE- CMA (µg/L)	NQE-MA (μg/L)
	Salinité	1 ‰	Méthode interne		
Hydrologie	Conductivité de la colonne d'eau	2 μS/cm	NF EN 27888		
	Matières en suspension (MES)	2 mg/L	NF EN 872		
	Aluminium	10 μg/L	NF EN ISO 17294-2		
	Cadmium	0,2 μg/L	NF EN ISO 17294-2	0,45	0,2
	Chrome	1 μg/L	NF EN ISO 17294-2		
	Cuivre	1 μg/L	NF EN ISO 17294-2		
	Fer	0,1 mg/L	NF EN ISO 11885		
Métaux	Manganèse	1 μg/L	NF EN ISO 17294-2		
	Nickel	1 μg/L	NF EN ISO 17294-2	34	8,6
	Plomb	1 μg/L	NF EN ISO 17294-2	14	1,3
	Zinc	10 μg/L	NF EN ISO 17294-2		
	Indium	3 μg/L	DS/EN ISO 17294m:2016		

³Annexe 8 de l'arrêté du 25/01/10 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement, version en vigueur au 5 février 2025 (dernière mise à jour des données le 5 novembre 2023).

setec énergie environnement setecinvivo

	Paramètre	Limite de quantification laboratoire*	Méthode d'analyse	NQE- CMA (µg/L)	NQE-MA (μg/L)
	Calcium	10 mg/L	NF EN ISO 11885		
	Chlore	0,03 mg/L	NF EN ISO 7393-2		
Sels	Sodium	1 mg/L	NF EN ISO 11885		
	Fluorures	0,05 mg/L	NF T 90-004		
	Sulfates	1 mg/L	NF ISO 15923-1		
	Escherichia coli	15 NPP/100 ml	NF EN ISO 9308-3		
Bactériologie	Entérocoques intestinaux	15 NPP/100 ml	NF EN ISO 7899-1		
Ecotoxicologie	Matières inhibitrices	Pas de valeur	NF EN ISO 6341		
НАР	Acénaphtène Acénaphthylène Anthracène Benzo(a)anthracène Benzo(b)fluoranthène Benzo(k)fluoranthène Benzo(ghi)pérylène Chrysène Dibenzo(a,h)anthracène Fluoranthène Indeno (1,2,3,c,d) pyrène	0,005 μg/L 0,001 μg/L 0,005 μg/L	Méthode interne	0,1 0,027 0,017 0,017 0,00082 0,12	0,1 0,00017 Note 11** Note 11** Note 11**
	Naphtalène	0,05 μg/L		130	2
	Phénanthrène Pyrène	0,005 μg/L			
Autres micro-	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	NF EN ISO 9562 (H 14) : 2005-02		
polluants	HCT C10-C40	0,1 mg/L	NF EN ISO 9377-2		
	Bromoforme	0,5 mg/L	Méthode interne		

^{*} La Limite de Quantification (LQ) varie selon les labos, ce n'est pas une valeur seuil. Si l'élément n'est pas détecté, c'est soit qu'il est absent de l'échantillon, soit qu'il est en quantité inférieure à la LQ.

^{**} Note 11 : Pour le groupe de substances prioritaires dénommé "hydrocarbures aromatiques polycycliques (HAP) " (n° 28), la NQE pour le biote et la NQE-MA dans l'eau correspondante se rapportent à la concentration de benzo (a) pyrène, sur la toxicité duquel elles sont fondées. Le benzo (a) pyrène peut être considéré comme un marqueur des autres HAP et, donc, seul le benzo (a) pyrène doit faire l'objet d'une surveillance aux fins de la comparaison avec la NQE pour le biote ou la NQE-MA dans l'eau correspondante.

Pour les paramètres biologiques et les nutriments, le tableau ci-dessous indique les intervalles correspondants aux différentes classes de qualité quand elles existent.

Tableau 5 : Paramètres analysés pour la qualité de l'eau - limite de quantification, méthode d'analyse et intervalles des différentes classes de qualité⁴.

	Limite de Paramètre quantification		Méthode	Intervalle correspondant à la classe d'état				tat
	Faramene	quantification laboratoire*	d'analyse	Très bon	Bon	Moyen	Médiocre	Mauvais
Biologie	Concentration en chlorophylle a	0,1 μg/L	NF T 90- 117	ı]4,4-10] µg/L	-	-	-
Biologie	Phéopigment	0,1 μg/L	NF T 90- 117	Pas de seuil				
	COT (Carbone Organique Total)	0,5 mg/L	NF EN 1484	≤ 5 mg/L]5 ; 7] mg/L]7 ; 10] mg/L]10 ; 15] mg/L	> 15 mg/L
	Azote Total	0,0014 mg/L 0,1 µmol/l		≤ 70 µmol/l]70 ; 95] µmol/l	> 95 µmol/l	-	-
	Nitrites	0,0023 mg/L 0,05 µmol/l		≤ 0,1 mg/L]0,1 ; 0,3] mg/L]0,3 ; 0,5] mg/L]0,5 ; 1] mg/L	> 1 mg/L
Nutriments	Nitrates	0,0062 mg/L 0,1 µmol/l	Méthode interne	≤ 10 mg/L]10 ; 50] mg/L	*	*	*
	Ammonium	0,0018 mg/L 0,1µmol/l		≤ 0,1 mg/L]0,1 ; 0,5] mg/L]0,5 ; 2] mg/L]2 ; 5] mg/L	> 5 mg/L
	Orthophosphates	0,0095 mg/L 0,1µmol/l				Pas de seu	ıil	
	Silicium	0,2 mg/L	NF EN ISO 11885	Pas de seuil				

^{*}Les connaissances actuelles ne permettent pas de fixer des seuils fiables pour cette limite.

2.5.2 Profils verticaux à la sonde multiparamètre

Les paramètres suivants sont mesurés avec la sonde multiparamètre :

- Pression (dbar);
- Conductivité (mS/cm);
- Température (°C);
- Concentration (mg/L) et saturation (%) en oxygène ;
- Turbidité (NTU);
- Chlorophylle a (ppb);
- Salinité (PSU) ;
- Profondeur (m).

setec énergie environnement setecinvivo

⁴Annexe 8 de l'arrêté du 25/01/10 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement, version en vigueur au 5 février 2025 (dernière mise à jour des données le 5 novembre 2023).

2.5.3 Échantillonneurs DGT

La liste des Eléments Traces Métalliques (ETM) qu'Ifremer préconise de rechercher dans la matrice eau marine par la technique DGT est présenté dans le tableau ci-dessous (Amouroux et al., 2023).

Tableau 6 : Limites de quantification et méthodes d'analyse pour les paramètres analysés sur les échantillonneurs DGT.

	Paramètre	Limite de quantification laboratoire	Méthode d'analyse		
	Aluminium				
	Cadmium		Méthode interne		
	Chrome				
	Cuivre	La limite de quantification visée est de l'ordre de 0,1 µg/L			
Métaux	Fer				
	Manganèse				
	Nickel				
	Plomb				
	Zinc				

Pour la détection de ces Eléments Traces Métalliques (ETM), deux types de DGT de différentes résines ont été déployés comme recommandé :

- DGT Chelex 100 (LSNM-NP) permettant la recherche des métaux suivants : cadmium, chrome, cuivre, fer, manganèse, nickel, plomb et zinc;
- DGT- Chelex/TiO2 (Metsorb) (LSNX-NP) permettant la recherche d'aluminium et d'autres métaux (ex. arsenic, cadmium, chrome, cuivre, fer, manganèse, nickel, plomb, antimoine, sélénium).

2.5.4 Caging de moules

Les analyses réalisées sur les moules consistent en des analyses biométriques et des analyses chimiques faites en laboratoire. Il est prévu que pour chaque poche de moules, la mortalité de la poche soit aussi mesurée. La mortalité est évaluée à T0 après constitution de la poche ou sur site à bord du bateau, ainsi qu'à T0 + 3 mois et T0 + 6 mois à la sortie de l'eau des poches.

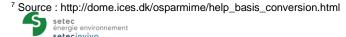
La liste des paramètres recherchés dans la chair de moule, leur limite de quantification et les méthodes sont présentées dans le tableau ci-dessous. Les seuils de qualité environnementale qui sont définis pour le Descripteur 8 de la DCSSM⁵ sont également indiqués dans le tableau s'ils existent :

- Le seuil Environnemental Assessment Criteria (EAC) représente la concentration en contaminant dans le sédiment et le biote en dessous de duquel un effet chronique n'est pas attendu pour les espèces marines, notamment les plus sensibles (OSPAR, 2009). On considère que des concentrations en contaminants inférieures aux seuils EAC représentent un risque acceptable pour l'environnement.
- Le seuil Effects Range Low (ERL), développé par l'US EPA (United States Environmental Protection Agency), renseigne sur la qualité des sédiments et est utilisé pour protéger les organismes de potentiels effets délétères des contaminants (EPA, 2002). Les effets pour les organismes sont

⁵ Annexe 3 de Mauffret A. et al, 2018. Evaluation du descripteur 8 « Contaminants dans le milieu » en France Métropolitaine. Rapport scientifique pour l'évaluation 2018 au titre de la DCSMM.

26

rarement préjudiciables lorsque les teneurs en contaminants sont inférieures à la valeur de l'ERL. Ce seuil représente une solution alternative lorsque les seuils EAC recommandés ne sont pas disponibles (OSPAR, 2009)6.


- Le seuil sanitaire (EC) est la teneur maximale admise dans les denrées alimentaires par la réglementation de la Communauté Européenne afin de protéger la santé publique (Commission Regulation no 1881/2006). Les seuils EC sont recommandés par OSPAR pour les métaux dans le biote en l'absence de seuils environnementaux (OSPAR, 2009).
- Pour certaines substances ou certains effets, un Background Assessment Concentration (BAC) est aussi disponible. Le seuil BAC correspond à la concentration d'un contaminant proche ou égale au bruit de fond (substances naturelles) ou de zéro (substances artificielles) (OSPAR, 2009).

Pour certains paramètres, les seuils sont en unités μg/kg p.l (poids lipidique) ou μg/kg p.f (poids frais ou poids humide) et ils ont donc été convertis en µg/kg p.s (poids sec) selon les formules ci-dessous :

Tableau 7: Conversion des seuils en poids sec à partir des seuils en poids lipidique et poids humide (ou poids frais).

Conversion poids frais ou poids humide	Conversion poids lipidique					
$C_{ps} = C_{ph} \times \frac{100}{\%_{MS}}$, avec :	$C_{ps} = C_{pl} \times \frac{\%_{ML}}{\%_{MS}}$, avec :					
C_{ps} : concentration exprimée en poids sec (mg/kg p.s.); C_{ph} : concentration exprimée en poids frais (mg/kg p.f.); $%_{MS}$: pourcentage de matière sèche dans la chair molle; C_{ps} : concentration exprimée en poids sec (mg/kg p.s.); C_{pl} : concentration exprimée en poids lipidique (mg/kg p.l.); $%_{MS}$: pourcentage de matière sèche dans la chair molle (= 17 pour $Mytilus\ edulis^7$); $%_{ML}$: pourcentage de matière lipidique dans la chair molle (= 1,3 pour $Mytilus\ edulis^3$).						

https://oap.ospar.org/fr/ospar-assessments/quality-status-reports/qsr-2023/evaluations-des-indicateurs/hap-mollusques-crustaces-

setecinvivo

Tableau 8 : Limites de quantification et méthodes d'analyse pour les paramètres analysés sur chair de moule8.

	Paramètre	Limite de quantification laboratoire	Méthode d'analyse	Type de seuil	Valeurs de seuil
Analyses biométriques	Taille de la coquille	Sans objet	Méthode		
	Poids humide de chair	Sans objet	interne		
	Poids sec de chair	1%	NF ISO 11465		
	Poids sec de coquille	Sans objet			
	Indice de condition	Sans objet			
	Aluminium	1 mg/kg M.S.			
	Argent	0,5 mg/kg M.S.			
	Arsenic	1 mg/kg M.S.			
	Cadmium	0,02 mg/kg M.S.		EC	5,88235 mg/kg p.s
	Chrome	0,5 mg/kg M.S.			
	Cuivre	0,5 mg/kg M.S.		BAC	6,000 mg/kg p.s
Métaux	Fer	1 mg/kg M.S.	Méthode interne		
	Manganèse	0,25 mg/kg M.S.			
	Mercure	0,02 mg/kg M.S.		EC	2,94118 mg/kg p.s
	Nickel	0,5 mg/kg M.S.			
	Plomb	0,02 mg/kg M.S.		EC	8,82353 mg/kg p.s
	Zinc	1 mg/kg M.S.		BAC	63,000 mg/kg p.s
	PCB 28	0,0001 mg/kg M.S.		EAC	0,00512 mg/kg p.s
PCB (9)	PCB 52	0,0001 mg/kg M.S.		EAC	0,00826 mg/kg p.s
	PCB 101	0,0001 mg/kg M.S.		EAC	0,00925 mg/kg p.s
	PCB 118	0,0001 mg/kg M.S.		EAC	0,00191 mg/kg p.s
	PCB 138	0,0001 mg/kg M.S.		EAC	0,02424 mg/kg p.s
	PCB 153	0,0001 mg/kg M.S.		EAC	0,12121 mg/kg p.s
	PCB 180	0,0001 mg /kg M.S.		EAC	0,03586 mg/kg p.s
HAP (16)	Acénaphtène	0,001 mg/kg M.S.			
	Acénaphthylène	0,001 mg/kg M.S.			
	Anthracène	0,001 mg/kg M.S.		EAC	0,290 mg/kg p.s
	Benzo(a)anthracène	0,0025 mg/kg M.S.		EAC	0,080 mg/kg p.s
	Benzo(a)pyrène	0,003 mg/kg M.S.		NQE	0,005 mg/kg p.s
	Benzo(b,j)fluoranthène	0,003 mg/kg M.S.			
	Benzo(k)fluoranthène	0,003 mg/kg M.S.		EAC	0,260 mg/kg p.s
	Benzo(ghi)pérylène	0,003 mg/kg M.S.		EAC	0,110 mg/kg p.s

⁸ Annexe 3 de Mauffret A. et al, 2018. Evaluation du descripteur 8 « Contaminants dans le milieu » en France Métropolitaine. Rapport scientifique pour l'évaluation 2018 au titre de la DCSMM.

28

	Paramètre	Limite de quantification laboratoire	Méthode d'analyse	Type de seuil	Valeurs de seuil
	Chrysène	0,0025 mg/kg M.S.		BAC*	0,0081 mg/kg p.s
	Dibenzo(a,h)anthracène	0,003 mg/kg M.S.			
	Fluoranthène	0,002 mg/kg M.S.		EAC	0,110 mg/kg p.s
	Fluorène	0,001 mg/kg M.S.			
	Indéno (1,2,3,c,d) pyrène	0,003 mg/kg M.S.		BAC*	0,0024 mg/kg p.s
	Naphtalène	0,003 mg/kg M.S.		EAC	0,340 mg/kg p.s
	Phénanthrène	0,001 mg/kg M.S.		EAC	1,700 mg/kg p.s
	Pyrène	0,002 mg/kg M.S.		EAC	0,100 mg/kg p.s

^{*} BAC Manche Atlantique (développé par OSPAR).

2.6 ANALYSE DES DONNEES

2.6.1 Analyse des résultats d'analyses sur échantillons d'eau

Les résultats communiqués par Eurofins sont comparés aux valeurs de seuil de qualité environnementale NQE quand ils existent. Les seuils en Concentration Maximale Admissible (NQE-CMA) pour les eaux côtières et de transitions sont utilisés pour l'interprétation des résultats de campagnes à chaque station. Les seuils en Moyenne Annuelle (NQE-MA) sont quant à eux utilisés pour l'interprétation des moyennes sur chaque station sur toutes les campagnes, mais seulement si cette moyenne annuelle est pertinente à calculer (voir Chapitre 3.2).

2.6.2 Analyses des mesures issues des sondes multiparamètres

Pour les paramètres suivis au moyen d'une sonde multiparamètre, les mesures font l'objet d'une analyse comparée entre stations (analyse spatiale) et sur la colonne d'eau. Une analyse comparée dans le temps est également effectuée au niveau de chaque station pour analyser la variabilité saisonnière. La représentation choisie pour les paramètres mesurés à la sonde prend la forme d'une planche de graphiques par paramètre, chaque graphique correspondant à une campagne.

Il est important de souligner que les valeurs aberrantes ont été retirées pour l'analyse des résultats. De ce fait, certaines courbes ne commencent pas à zéro. De plus, pour une même station, les profondeurs enregistrées à la sonde sont plus faibles au début de la campagne (avril et mai 2022) que celles enregistrées les mois suivants. Cela est dû au fait qu'entre le début des campagnes et la suite des campagnes, la méthodologie a été améliorée, notamment pour faire descendre la sonde le plus au droit du navire (en mettant le navire en positionnement dynamique), et également en affinant la connaissance de la position du fond pour faire descendre la sonde au plus près du fond.

Le profil à la sonde multiparamètre n'a pas pu être réalisé à la station EAU04 en avril 2022, de même que les profils de chlorophylle a à partir de la sonde EXO3 de YSI en septembre 2024.

2.6.3 Analyse des DGTs

L'analyse de la concentration en métaux traces dans les éluats de DGT est faite par le laboratoire Filab, sous la responsabilité de Ifremer. Une fois ces résultats perçus, ils sont traités et analysés pour déterminer les concentrations en métaux dans l'eau. La méthode de calcul est présentée dans Millan et al. (2022) et elle se fait en deux étapes :

1) Calcul de la masse de métal (M), en g, accumulée dans la résine à l'aide de l'équation suivante :

$$M = C_e * (V_{HNO3} + V_{gel}) / f_e$$

avec:

- C_e , la concentration de métaux, en g/L, dans la solution d'élution en HNO₃ 1 M (valeur fournie par le laboratoire d'analyse) ;
- V_{HNO3}, le volume de HNO₃ ajouté à la résine (constante transmise par Ifremer égale à 2 ml);
- V_{gel} , le volume du gel de résine (constante égale à 0,2 ml, indiquée sur le site de DGT Research⁹);
- f_e, facteur d'élution de chaque métal (constante égale à 0,8, indiquée sur le site de DGT Research).

2) Calcul de la concentration de métal dans l'eau, en g/L, mesurée par le dispositif (DGT) (CDGT), à l'aide de l'équation suivante :

$$CDGT = (M * \Delta g) / (D * t * A)$$

avec:

- Δg,l'épaisseur en cm du gel diffusif (0,075 cm) plus l'épaisseur de la membrane filtrante (0,014 cm);
- D, le coefficient de diffusion du métal dans le gel (fonction de la température moyenne mesurée in situ ; table de coefficient de diffusion fournie par DGT Research);
- t, le temps de déploiement (en secondes) ;
- A, la surface d'exposition (3,14 cm²).

Le traitement des données ainsi calculées est aussi présenté dans Millan et al. (2022), et consiste à exclure les valeurs aberrantes. Pour identifier les valeurs aberrantes, les données sont représentées sous forme de graphique pour une analyse visuelle et un coefficient de variation est calculé.

En ce qui concerne les résultats des « blancs laboratoire » et des « blancs terrain », l'analyse est plus délicate et il est conseillé de vérifier les deux points suivants :

- Vérifier que les DGTs « blancs laboratoire » sont largement (dix fois) inférieurs aux valeurs des DGTs exposés sur le terrain (« blancs terrain »), et aucune correction de la quantité n'est effectuée dans les DGT exposés;
- Vérifier les DGTs « blancs terrain » pour évaluer la contamination de l'atmosphère pendant l'assemblage, le transport et le déploiement /récupération de manière qualitative. Des niveaux élevés dans les DGTs « blancs terrain », par exemple, peuvent indiquer la nécessité d'une révision de ces opérations.

2.6.4 Analyse des données de caging de moules

Suite aux différents échecs concernant la mise en place du protocole pour le caging de moules, il n'y a pas, à ce stade, de résultats d'analyses pour les moules à T0 + 3 mois et à T0 + 6 mois (Chapitre 2.3.3.1). Les analyses chimiques des moules obtenues à T0 + 6 mois devaient être comparées avec les résultats des analyses initiales (T0) et avec les analyses intermédiaires (T0 + 3 mois). La mortalité mesurée sur la poche de moules devait aussi être comparée avec la mortalité mesurée sur la poche initiale après conditionnement. Il n'est donc pas possible de conclure quant à la qualité des eaux via cette matrice. Les résultats communiqués par Eurofins concernent seulement les analyses à T0 et elles ont été comparées aux valeurs de seuil de qualité environnementale quand ils existent.

3. RÉSULTATS ENTRE AVRIL 2022 ET MARS 2023 : PARAMÈTRES PHYSICO-CHIMIQUES ET PRÉLÈVEMENTS D'EAU

3.1 PARAMETRES PHYSICO-CHIMIQUES

Cette partie comporte la description des paramètres de température, de salinité, de concentration et de saturation en oxygène dissous, de fluorescence et de turbidité. Une synthèse des résultats est proposée dans le chapitre 3.3.1.

3.1.1 Évolution de la température

La Figure 13 présente l'évolution de la température (en °C) à chaque station entre avril 2022 et mars 2023 sur l'ensemble de la colonne d'eau. La température suit globalement la même dynamique entre les stations.

Entre avril et septembre, l'eau de surface se réchauffe puis diminue d'octobre à mars 2023. Une thermocline se met en place en avril, séparant une couche d'eau chaude de l'ordre de 12,5 à 13°C (10 premiers mètres) d'une couche plus profonde et plus froide d'environ 11°C (15 m jusqu'au fond).

De mai à juillet, la température de surface augmente, la thermocline sépare cette eau de surface chaude (> 15°C) d'une couche inférieure plus froide (11-12°C) autour de 15 à 30 m de profondeur.

D'août à novembre, la température de surface diminue : peu à peu la thermocline se dissipe et la colonne d'eau s'homogénéise.

En décembre, la température est homogène sur la colonne d'eau pour la station la plus côtière (station EAU11). Pour les autres stations, la température est homogène sur les 60 premiers mètres puis apparaît plus froide jusqu'au fond.

De décembre à février, la colonne d'eau s'homogénéise, avec une température d'environ 12-13°C.

En mars 2023, la température de surface est plus froide que la température plus en profondeur, notamment à la station EAU11. De plus, ce refroidissement s'accompagne également d'une dessalure (observable sur la Figure 14). Un apport d'eau douce et un vent froid au moment de la campagne¹⁰ contribuent à ce refroidissement et ce dessalement observé en surface. La station qui apparaît la plus chaude en mars 2023 est celle-là plus au large (station EAU08).

D'une manière globale, la température au fond (à partir de 70 m) est établie entre 11 et 12°C sur toute la période de suivi.

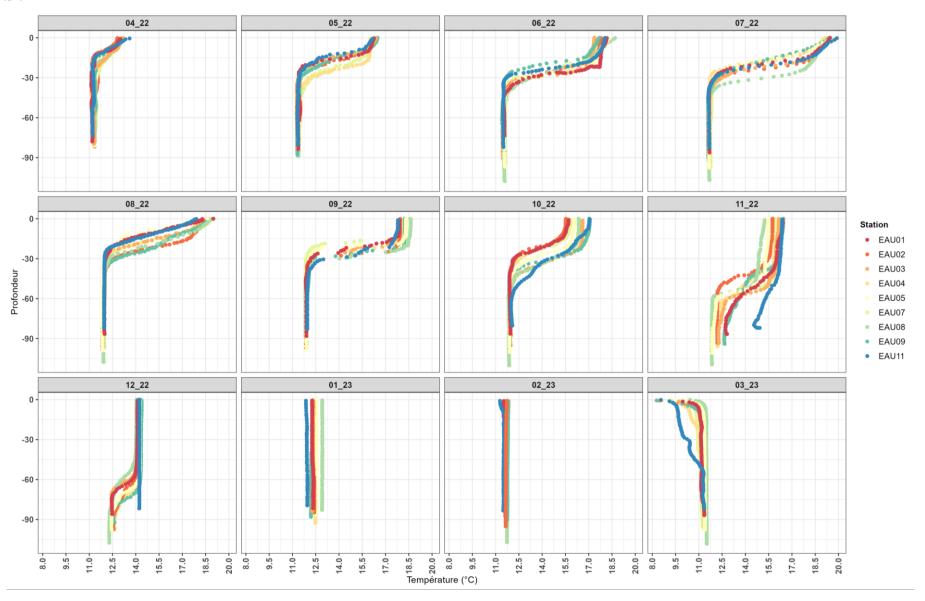


Figure 13 : Évolution de la température (°C) à chaque station entre avril 2022 et mars 2023.

3.1.2 Évolution de la salinité

La Figure 14 présente l'évolution de la salinité (en PSU – Practical Salinity Unit) à chaque station entre avril 2022 et mars 2023 sur l'ensemble de la colonne d'eau. Comme pour la température, la salinité suit la même dynamique à chaque station.

La salinité augmente entre avril et novembre, puis diminue de décembre 2022 à mars 2023, oscillant entre 33 et 36 PSU. La station EAU11 est la plus proximale de la côte et donc sous influence continentale.

En avril 2022, la salinité est comprise entre 33,5 et 34,5 PSU avec un maximum de salinité autour de 15 m de profondeur.

Ce pic de salinité s'approfondit et s'intensifie au cours de mois de mai et juin 2022, de quelques dixièmes de PSU à 1 PSU et de 15 à 30 m de profondeur. En dehors de ce pic, la salinité varie autour de 34,5 PSU. Ce pic est relié à la thermocline identifiée sur les profils de température. Au niveau de la profondeur de la thermocline, on observe à la fois une forte diminution de la température et une augmentation de la salinité sur quelques mètres. En juillet et août 2022, ce pic remonte jusqu'à 15 m de profondeur environ.

On rappelle que les profils du mois de septembre ont été réalisés avec la sonde EXO et un doute a été émis quant à la validité des valeurs de salinité mesurées, en particulier lors de la traversée de la thermocline (voir Chapitre 2.5.2). Les valeurs de salinité entre 15 et 30 m de profondeur ont donc été exclues, elles présentaient en outre une soudaine diminution de 1,5 PSU. Alors que des données de Coriolis issues de bouées dérivantes montrent que les variations de salinité sur la verticale sont de l'ordre de 0,2 PSU (Annexe 1). Le profil vertical de salinité est donc relativement constant, en accord avec ce qui est observé sur le profil mesuré à la sonde. La salinité oscille autour de 35 PSU entre la surface et 15 m de profondeur, puis entre 30 m de profondeur et le fond.

En novembre et décembre 2022, la salinité est très légèrement inférieure à 34,5 PSU et vers 70 m de profondeur, elle apparait plus forte de plusieurs dixièmes.

En janvier et février 2023, la salinité est homogène à chaque station et sur toute la colonne d'eau. Selon les stations, elle fluctue entre 33 et 33,5 PSU. En mars et à l'inverse de la température, la salinité apparaît plus forte dans les premiers mètres et se stabilise ensuite entre 33,5 et 34 PSU. Comme pour la température, c'est la station EAU11 qui présente les valeurs de salinité les plus basses et la station EAU08 qui présente les valeurs les plus élevées.

Le laboratoire Eurofins mesure également la salinité à partir des prélèvements d'eau effectués en subsurface, avec une autre unité que le PSU qui est le pour mille ‰. Ces deux unités sont équivalentes. Les valeurs obtenues par Eurofins oscillent entre 33,8 et 35,1‰, ce qui est cohérent avec les mesures réalisées.

Les résultats pour la conductivité (mesurée à la sonde et par Eurofins) ne sont pas présentés, car ce paramètre est assimilable à la salinité.

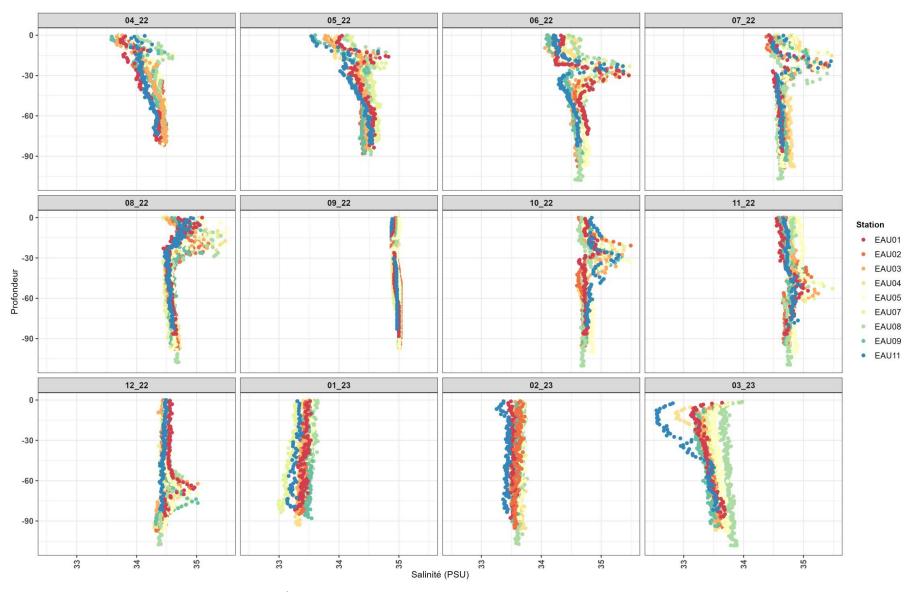


Figure 14 : Évolution de la salinité (PSU) à chaque station entre avril 2022 et mars 2023.

3.1.3 Évolution de la concentration et de la saturation en oxygène

La Figure 15 présente l'évolution de la concentration en oxygène (mg/L) à chaque station entre avril 2022 et mars 2023 sur l'ensemble de la colonne d'eau. Les stations suivent la même dynamique, à l'exception de la campagne de mars 2023 pour laquelle des différences sont observables entre les stations. Les valeurs sont comprises entre 7 et 13 mg/L tout au long de l'année.

Quelques variations sont visibles mensuellement. D'avril à décembre 2022, la concentration en oxygène est plus importante en surface jusqu'à une quinzaine de mètres (aux alentours de 11 mg/L) qu'en profondeur (entre 7 et 9 mg/L). Ce gradient décroissant en oxygène de la surface vers le fond est d'autant plus marqué de juin à août 2022.

En septembre, les valeurs apparaissent plus faibles que les autres mois (entre 6 et 7 mg/L) avec une configuration différente le long de la colonne d'eau. Cette différence par rapport aux autres mois étudiés peut être due au changement de matériel utilisé pour ce mois d'étude, la sonde EXO ayant été utilisée à la place de la sonde WIMO. La comparaison des mesures entre les deux sondes a montré que pour l'oxygène dissous, les valeurs étaient plus faibles pour la sonde exo que pour la sonde WIMO (voir Chapitre 2.5.2). Cette différence de configuration étant observée également au mois de septembre pour la salinité et celle-ci étant liée à des conditions environnementales particulières, une autre hypothèse est que cette différence s'applique à d'autres paramètres de la masse d'eau, comme l'oxygène.

En janvier et février 2023, la concentration en oxygène est homogène sur la colonne d'eau et entre les stations, autour de 10-11 mg/L. En mars 2023, elle est aussi homogène sur la colonne d'eau, mais de légères variations sont perceptibles entre les stations.

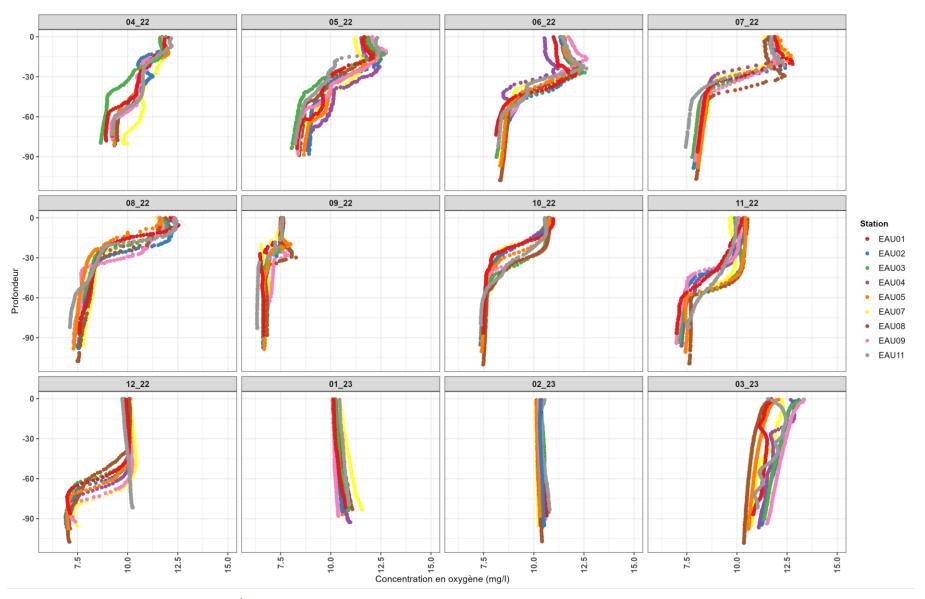


Figure 15 : Évolution de la concentration en oxygène (mg/L) à chaque station entre avril 2022 et mars 2023.

La Figure 16 présente l'évolution de la saturation en oxygène (%) à chaque station entre avril 2022 et mars 2023 sur l'ensemble de la colonne d'eau. La saturation en oxygène évolue de la même façon que la concentration en oxygène.

D'avril à décembre 2022, un gradient décroissant en saturation de la surface vers le fond est visible, avec une saturation en surface (plus de 110 %) plus importante qu'en profondeur (80-90 %). Cette différence est notamment bien marquée aux alentours de 30 mètres de profondeur entre juin et octobre 2022. Sous la couche où la saturation est la plus importante, les valeurs sont aux alentours de 80 % de mai à août et de 70 % d'octobre à décembre.

En janvier et février 2023, la saturation en oxygène est homogène sur la colonne d'eau et entre les stations, entre 90 et 100 %. Comme pour la concentration en oxygène, en mars 2023, la saturation est homogène sur la colonne d'eau, mais de légères variations sont percevables entre les stations, elle commence à être plus importante que les campagnes précédentes.

La quantité d'oxygène dissous est influencée par de nombreux paramètres, notamment la température et la salinité. La concentration et la saturation en oxygène fluctuent en effet de manière similaire à ces deux paramètres. La saturation en oxygène est certes fonction de la température et de la salinité, mais aussi de la dynamique biologique (production primaire).

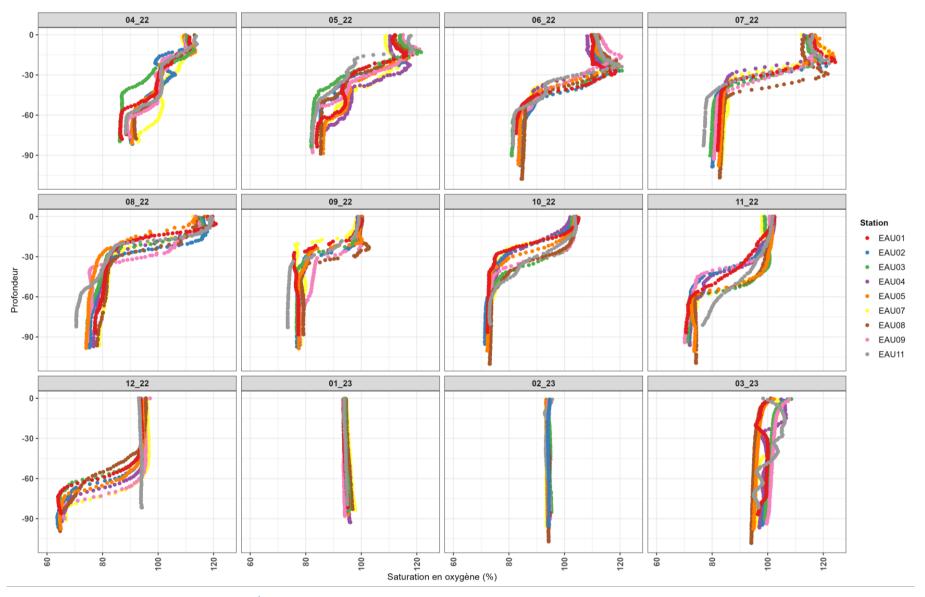


Figure 16 : Évolution de la saturation en oxygène (%) à chaque station entre avril 2022 et mars 2023.

3.1.4 Évolution de la fluorescence, proxy de la chlorophylle a

La teneur en chlorophylle *a*, mesurée par le biais de la fluorescence, est un indicateur de la biomasse phytoplanctonique en présence. La chlorophylle *a* est le pigment présent chez tous les végétaux qui permet de capter la lumière nécessaire à la photosynthèse. Lors du processus de la photosynthèse, les végétaux transforment le dioxyde de carbone (CO₂) en matière organique. La quantité de chlorophylle *a* mesurée donne ainsi une indication sur la quantité de phytoplancton dans l'eau.

La Figure 17 présente l'évolution de la fluorescence en ppb (parts per billion soit partie par milliard, indicateur de la chlorophylle *a*) en fonction de la profondeur à chaque station entre avril 2022 et mars 2023.

En raison d'un défaut du capteur de fluorimétrie lors de la campagne de septembre 2022 et de celle de mars 2023, aucune mesure n'a pu être enregistrée sur ce paramètre en septembre et seulement 2 profils sont exploitables pour le mois de mars 2023.

Le maximum de fluorescence et donc de chlorophylle *a* varie entre avril 2022 et mars 2023 : d'avril à août 2022, les maximums sont atteints entre 20 et 40 m de profondeur avec des valeurs atteignant 100 à 150 ppb. L'intensité de la chlorophylle *a* est la plus importante entre mai et août. En octobre et novembre 2022, les valeurs de fluorescence les plus fortes se concentrent en surface. De décembre 2022 à mars 2023, les valeurs sont homogènes sur la colonne d'eau et ne dépassent pas 25 ppb.

La concentration en chlorophylle *a* est notamment influencée par la température de l'eau. En été, quand la température de l'eau est plus élevée, la concentration en chlorophylle *a* a tendance à être plus importante, tandis qu'elle est plus faible en hiver quand l'eau se refroidit.

Le maximum de concentration en chlorophylle *a* est aussi intimement liée à la profondeur de la thermocline. Entre avril et juillet 2022, on peut observer que la profondeur du pic de concentration en chlorophylle *a* suit l'approfondissement de la thermocline. Dans le même temps, la concentration augmente avec des conditions propices au développement de la photosynthèse (luminosité importante et disponibilité en nutriments dans la couche de mélange). À partir du mois d'octobre 2022 jusqu'en mars 2023, le pic de concentration en chlorophylle *a* diminue avec l'approfondissement de la thermocline. Les conditions hivernales et le manque de lumière ne sont pas propices au développement de la photosynthèse, bien que l'apport en nutriment dans la couche de mélange soit important.

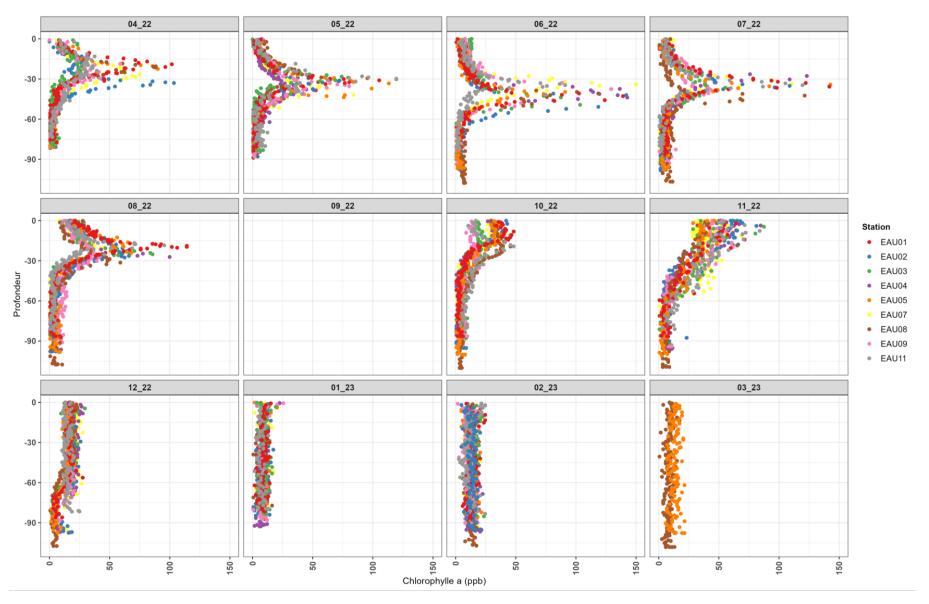


Figure 17 : Évolution de la fluorescence (ppb) à chaque station entre avril 2022 et mars 2023.

3.1.5 Évolution de la turbidité et des matières en suspension

La Figure 18 présente l'évolution de la turbidité (NTU - Nephelometric Turbidity Unit¹¹) à chaque station entre avril 2022 et mars 2023 sur l'ensemble de la colonne d'eau.

En raison d'un défaut du capteur de turbidité lors de la campagne d'août 2022 et de février 2023, aucune mesure n'a pu être enregistrée sur ce paramètre lors de ces campagnes. De plus, pour la même raison, seuls 2 profils sont disponibles en janvier 2023 et 3 profils en mars 2023.

D'avril à septembre, la turbidité est homogène de la surface jusqu'à 60 m de profondeur environ avec de valeurs mesurées de moins de 1 NTU. À partir de 60 m de profondeur jusqu'au fond, la turbidité augmente légèrement (jusqu'à 2,5 NTU au maximum).

D'octobre à décembre, la turbidité est plus importante : entre 1 et 2 NTU dans les 70 premiers mètres et elle augmente plus fortement vers le fond (jusqu'à 2,5 NTU au fond en octobre, 5,0 NTU en novembre et jusqu'à 10 NTU au fond en décembre). La turbidité au fond est la plus importante en décembre. Les conditions hivernales, avec une météo plus agitée (houle et vent), peuvent contribuer à la remise en suspension de matières sédimentaires et augmenter la turbidité ambiante, en particulier au fond.

En janvier et en mars 2023, des valeurs de turbidité plus faibles sont enregistrées et elles continuent d'être plus importantes en profondeur qu'en surface.

Les conditions météorologiques plus ou moins agitées (houle et vent) contribuent aux variations de la turbidité. Il est important de noter que les mesures de turbidité sont faites ici dans des conditions de mer calme et que les variations de turbidité peuvent alors être moindres. Cela peut expliquer les faibles valeurs mesurées (inférieures à 2,5 NTU sur toute la colonne d'eau en dehors du fond).

De manière générale, il est aussi difficile de déterminer l'amplitude de variations de la turbidité de fond, notamment à cause d'éventuels contacts de la sonde sur le fond qui peuvent contribuer à la remise en suspension de sédiments fins.

¹¹ NTU - Nephelometric Turbidity Unit : pour plus plus de précisions, voir ce lien https://www.dynalit.fr/Mesures/Instruments-de-mesure/Flux-sedimentaire/Turbidimetre.

42

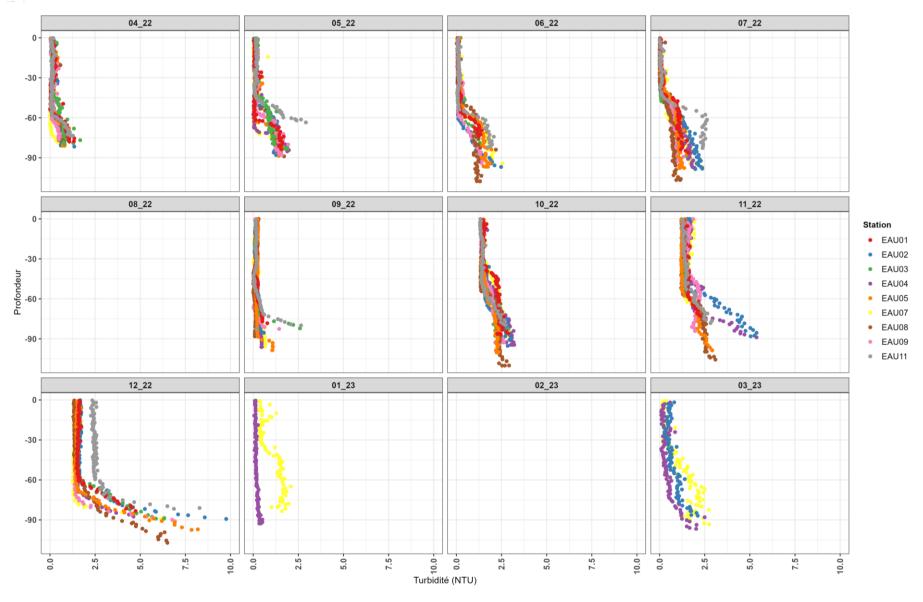


Figure 18 : Évolution de la turbidité (NTU) à chaque station entre avril 2022 et mars 2023.

En complément, les matières en suspension (MES) ont été mesurées par Eurofins sur les prélèvements d'eau réalisés en surface, entre 0 et 5 mètres de profondeur (Figure 19). Les valeurs mesurées oscillent entre 2 et 17 mg/L. La teneur en MES varie selon les campagnes et reste plutôt homogène entre les stations, à quelques exceptions près (octobre 2022). Elle est plus importante pour les mois estivaux, notamment en juillet avec des valeurs comprises entre 9 et 17 mg/L et plus faible pour les campagnes d'automne 2022/hiver 2022-2023, notamment pour les campagnes de novembre 2022 et de janvier à mars 2023 (2 à 4 mg/L).

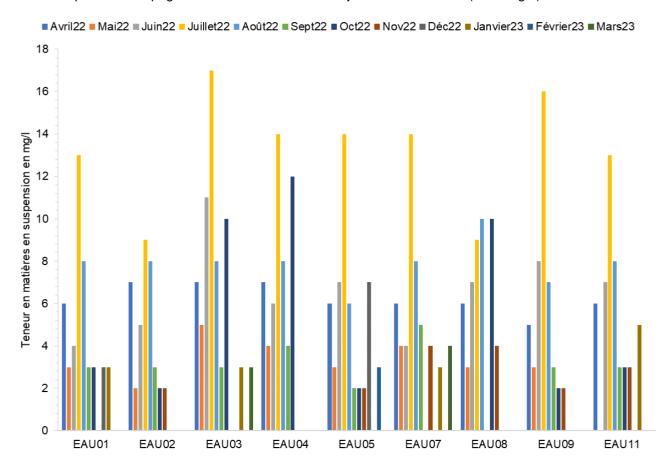


Figure 19: Évolution de la teneur en matières en suspension (mg/L) entre avril 2022 et mars 2023.

La comparaison des mesures de MES dans ces prélèvements avec celles des profils de turbidité faites à la sonde n'est pas immédiate. L'unité de la teneur en MES des échantillons est en mg/L et une relation NTU/MES doit être établie pour convertir ces données dans l'unité des sondes (NTU). Toutefois la relation entre les deux unités étant linéaire (en présence de particules similaires), une comparaison directe permet d'apprécier les évolutions relatives.

Les résultats des mesures en MES des prélèvements ne semblent pas refléter la turbidité mesurée à la sonde. D'une part, les profils de turbidité montrent que les valeurs maximales en surface restent inférieures à 2,5 NTU, tandis que pour les prélèvements, des valeurs de 6 à 18 mg/L au maximum ont été mesurées. D'autre part, les résultats des variations en MES pour les prélèvements en surface ne coïncident pas celles des données de turbidité. En effet, les valeurs maximales de MES sont observés en juillet et octobre 2022, alors que les valeurs maximales de turbidité en surface pour les profils sont plutôt atteintes d'octobre à décembre.

La moyenne en NTU de la tranche d'eau 0-5 m et les valeurs de MES ont été corrélées, mais le coefficient de corrélation est trop faible pour établir une relation NTU-MES avec confiance (R²=0.162). Les sondes ont été étalonnées et contrôlées régulièrement et leur fonctionnement ne laisse pas penser qu'il puisse y avoir des erreurs de mesures ponctuelles de plusieurs NTU sur les mois de juillet et octobre. Les mesures à la sonde sont données avec une exactitude de 5% de la valeur mesurée. Les valeurs de MES pour les mois de juillet et d'octobre, qui sont importantes et incohérentes avec les mesures à la sonde (en NTU), posent quant à elles question.

Pour conclure, la comparaison entre les valeurs de turbidité mesurées à la sonde et les concentrations de MES mesurées dans les prélèvements est délicate, car plusieurs facteurs entrent en jeu (ex. : différence dans les méthodes de mesure à la sonde vs prélèvements, difficultés à capter une large gamme de MES dans les échantillons, sensibilité de la mesure en laboratoire, etc.). Globalement, les valeurs de turbidité et de MES restent faibles à cette échelle. Pour pouvoir établir une relation en les valeurs de MES et les mesures à la sonde, il conviendrait d'adapter le protocole pour avoir plus d'échantillons d'eau à analyse, dans le but d'ajouter de la redondance dans les mesures et ainsi consolider des moyennes fiables.

3.2 AUTRES PARAMETRES ANALYSES PAR EUROFINS

Les autres paramètres étudiés sont représentés ci-dessous sous forme d'un tableau à chaque station, pour chaque campagne entre avril 2022 et mars 2023.

À partir de juin 2022, de nouveaux paramètres ont été mesurés, à savoir le cadmium, le fer, l'indium, le silicium, le bromoforme ainsi que seize hydrocarbures aromatiques polycycliques, après émission de la liste définitive des paramètres à analyser par Ifremer.

Les paramètres bactériologiques et microtoxicologiques n'apparaissent pas dans les tableaux, car :

- Sur l'ensemble des stations et des campagnes entre avril 2022 et mars 2023, les concentrations d'Escherichia coli et d'entérocoques en NPP/100ml sont inférieures à la limite de quantification (15 NPP/100 ml); il n'y a donc pas eu de risque microbiologique dans la zone d'étude. Ces résultats sont tout à fait cohérents avec le fait que la zone d'étude est située au large des côtes, et soumise à un brassage important;
- Pour les campagnes d'avril à octobre 2022, le laboratoire en charge des tests écotoxicologiques a utilisé un modèle biologique d'eau douce par erreur produisant des résultats incohérents et inexploitables. En revanche, ces mêmes tests réalisés avec un modèle biologique adapté d'eau salée sur les échantillons de la campagne de novembre et celles de janvier à mars 2023 indiquent quant à eux une absence totale de toxicité des eaux.

Afin de visualiser la comparaison des valeurs aux seuils NQE-CMA (pour les paramètres qui font l'objet d'un seuil), les cases des valeurs sont colorées selon le code couleur ci-dessous (en référence au Tableau 4). Les valeurs ne sont pas comparées aux seuils NQE-MA, car il n'était pas pertinent de calculer les moyennes annuelles des paramètres concernés. En effet, leurs valeurs mensuelles sont soit toutes inférieures à la LQ au cours des 8 mois (ex. pour le plomb, l'anthracène ou le cadmium), soit une seule valeur était disponible pour un mois et pour le reste de valeurs mensuelles inférieures à la LQ (ex. pour le fluoranthène avec une valeur mesurée en juin 2022 et pour les autres mois les valeurs mesurées sont inférieures à la LQ).

Comparaison aux seuils

Pas de seuil défini

En dessous du seuil

Seuil atteint

Dépassement de seuil

Pas de conclusion possible, car LQ > seuil

Tableau 9 : Code couleur pour la comparaison aux seuils.

Les valeurs inférieures à la limite de quantification apparaissent en grisé. Si la LQ est supérieure au seuil, il n'est pas possible de conclure sur un éventuel dépassement de seuil. La LQ a parfois été augmentée selon les analyses et certains paramètres sont indiqués comme <10 (ex. en avril 2022). Cela dépend de la concentration des échantillons analysés.

On rappelle aussi que le benzo (a) pyrène peut être considéré comme un marqueur des autres HAP (c.-à-d. benzo (b) fluoranthène, benzo (k) fluoranthène et benzo (ghi) pérylène, donc que seul le benzo (a) pyrène fait l'objet d'une surveillance aux fins de la comparaison avec la NQE pour le biote ou la NQE-MA dans l'eau correspondante.

En ce qui concerne les nutriments et les paramètres biologiques, les cases sont colorées selon le code couleur ci-dessous.

Tableau 10 : Code couleur pour la comparaison aux classes d'état pour les paramètres biologiques et les nutriments.

Classes d'état	Code couleur
Pas de seuil défini	
Très bon	
Bon	
Moyen	
Médiocre	
Mauvais	

3.2.1 Résultats pour la campagne d'avril 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en avril 2022.

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil. De plus, les résultats sont similaires entre les stations.

Tableau 11 : Résultats des analyses de la campagne d'avril 2022.

		Limites de	Valeur de seuil			F	Résultats de	es analyses	d'avril 202	2		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Chlorophylle a	0,1 μg/L	Classes d'état	0,3	0,2	0,4	0,2	0,2	<0,1	0,4	0,5	0,2
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Aluminium	10 μg/L	Pas de seuil	<100	<lq< td=""><td><100</td><td><100</td><td><100</td><td><100</td><td><100</td><td><100</td><td><lq< td=""></lq<></td></lq<>	<100	<100	<100	<100	<100	<100	<lq< td=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< td=""><td><10</td><td><10</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<10	<10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<>	<10	<lq< td=""></lq<>
	Nickel	1 μg/L	34	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Plomb	1 μg/L	14	<10	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><10</td><td><lq< td=""></lq<></td></lq<>	<10	<lq< td=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Calcium	10 mg/L	Pas de seuil	376	373	331	343	374	379	380	374	376
	Chlore	0,03 mg/L	Pas de seuil	0,04	0,03	0,04	0,04	0,03	0,04	0,03	0,04	0,04
Sels	Sodium	1 mg/L	Pas de seuil	11300	11200	12300	12500	11200	11300	11400	11200	11200
	Fluorures	0,05 mg/L	Pas de seuil	0,69	0,64	0,62	0,62	0,62	0,65	0,64	0,64	0,66
	Sulfates	1 mg/L	Pas de seuil	2550	2600	2580	2570	2770	3010	3050	2800	2920
	COT	0,5 mg/L	Classes d'état	0,93	0,99	1,1	1,1	1,1	1,1	1,1	1,1	1,1
	Azata alabal	0,1 µmol/l	Classes d'état	2,8	2,1	4,7	3,9	4,3	2,4	1,7	3,7	2,2
Nutriments	Azote global	0,0014 mg/L		0,172	0,127	0,291	0,241	0,264	0,148	0,102	0,232	0,136
	Nitrites	0,0023 mg/L	Classes d'état	0,003	0,004	0,004	0,003	0,004	<lq< td=""><td><lq< td=""><td>0,005</td><td>0,003</td></lq<></td></lq<>	<lq< td=""><td>0,005</td><td>0,003</td></lq<>	0,005	0,003
	Millies	0,05 μmol/l		0,07	0,08	0,09	0,07	0,08	<lq< td=""><td><lq< td=""><td>0,1</td><td>0,07</td></lq<></td></lq<>	<lq< td=""><td>0,1</td><td>0,07</td></lq<>	0,1	0,07

		Limites de	Valeur de seuil			F	Résultats de	s analyses	d'avril 202	2		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Nitrates	0,1 µmol/l		1,4	1,8	2,1	1,3	1,8	0,53	<lq< td=""><td>1,7</td><td>0,23</td></lq<>	1,7	0,23
	Milrales	0,0062 mg/L	Classes d'état	0,088	0,112	0,132	0,083	0,112	0,033	<lq< td=""><td>0,104</td><td>0,014</td></lq<>	0,104	0,014
	Ammonium	0,1 µmol/l		1,3	2,1	2,1	2,1	2	1,6	1,5	1,6	1,7
	Ammonium	0,0018 mg/L	Classes d'état	0,023	0,037	0,038	0,039	0,036	0,030	0,027	0,029	0,031
	Orthophoophotoo	0,1 µmol/l	Pas de seuil	0,11	0,24	0,24	0,55	0,12	0,11	0,12	0,11	0,29
	Orthophosphates	0,0095 mg/L	Pas de seuil	0,011	0,022	0,022	0,053	0,011	0,011	0,011	0,011	0,028
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	14	25	28	17	19	36	28	19	14
	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

3.2.2 Résultats pour la campagne de mai 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en mai 2022.

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil. De plus, les résultats sont similaires entre les stations.

Tableau 12 : Résultats des analyses de la campagne de mai 2022.

Catégorie	Paramètre	Limites de quantification laboratoire année	Valeur de seuil NQE-CMA	Résultats des analyses de mai 2022										
		2022 - 2023	(µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11		
	Chlorophylle a	0,1 μg/L	Classes d'état	0,3	<lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,5</th><th>0,3</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,5</th><th>0,3</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,5</th><th>0,3</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,5</th><th>0,3</th></lq<></th></lq<>	<lq< th=""><th>0,5</th><th>0,3</th></lq<>	0,5	0,3		
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>		
	Aluminium	10 μg/L	Pas de seuil	<lq< th=""><th><100</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<100	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>		
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><100</th><th><lq< th=""><th><lq< th=""><th><100</th><th><100</th><th><lq< th=""><th><100</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><100</th><th><lq< th=""><th><lq< th=""><th><100</th><th><100</th><th><lq< th=""><th><100</th></lq<></th></lq<></th></lq<></th></lq<>	<100	<lq< th=""><th><lq< th=""><th><100</th><th><100</th><th><lq< th=""><th><100</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><100</th><th><100</th><th><lq< th=""><th><100</th></lq<></th></lq<>	<100	<100	<lq< th=""><th><100</th></lq<>	<100		
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>		
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><10</th><th><10</th><th><lq< th=""><th><10</th><th><10</th><th><10</th><th><10</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><10</th><th><10</th><th><lq< th=""><th><10</th><th><10</th><th><10</th><th><10</th></lq<></th></lq<>	<10	<10	<lq< th=""><th><10</th><th><10</th><th><10</th><th><10</th></lq<>	<10	<10	<10	<10		
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>		
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>		
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>		
	Calcium	10 mg/L	Pas de seuil	362	368	362	364	364	363	366	360	365		
	Chlore	0,03 mg/L	Pas de seuil	0,07	0,04	0,06	0,03	<lq< th=""><th><lq< th=""><th>0,57</th><th>0,05</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,57</th><th>0,05</th><th><lq< th=""></lq<></th></lq<>	0,57	0,05	<lq< th=""></lq<>		
Sels	Sodium	1 mg/L	Pas de seuil	10900	10900	11000	10800	10700	11000	10900	10900	10700		
	Fluorures	0,05 mg/L	Pas de seuil	0,65	0,66	0,69	0,7	0,71	0,7	0,67	0,66	0,65		
	Sulfates	1 mg/L	Pas de seuil	2990	2960	2910	2890	2960	3020	2910	2880	2880		
	COT	0,5 mg/L	Classes d'état	1,1	0,97	0,94	1,1	1,4	1,1	0,94	1,1	1,2		
	Azoto global	0,1 µmol/l	Classes d'état	1,2	1,5	1,2	1,2	2,4	1,6	1,8	2,2	1,3		
Nutriments	Azote global	0,0014 mg/L		0,074	0,091	0,075	0,072	0,147	0,100	0,109	0,138	0,080		
	Nitwite	0,0023 mg/L	Classes d'état	<lq< th=""><th>0,008</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,004</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,008	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,004</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,004</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,004</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,004</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,004</th><th><lq< th=""></lq<></th></lq<>	0,004	<lq< th=""></lq<>		
	Nitrites	0,05 µmol/l		<lq< td=""><td>0,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,17	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>		

Catégorie	Paramètre	Limites de quantification laboratoire année	Valeur de seuil NQE-CMA			F	Résultats de	es analyses	de mai 202	22		
		2022 - 2023	(µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Nitrotoo	0,1 µmol/l		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nitrates	0,0062 mg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Ammonium	0,1 µmol/l		1,1	1,2	1,1	1	2,1	1,5	1,6	1,9	1,1
	Ammonium	0,0018 mg/L	Classes d'état	0,019	0,021	0,020	0,019	0,039	0,026	0,029	0,034	0,021
	Orthophophotos	0,1 µmol/l	Pas de seuil	0,15	0,41	0,13	0,17	0,2	0,14	0,15	0,75	0,12
	Orthophosphates	0,0095 mg/L	Pas de seuil	0,014	0,039	0,012	0,016	0,019	0,013	0,014	0,071	0,012
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	26	17	13	33	16	22	15	14	17
	polluants charbon actif (AOX) HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

3.2.3 Résultats pour la campagne de juin 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en juin 2022.

Comme cela a été indiqué précédemment, à partir de juin 2022, de nouveaux paramètres ont été mesurés, à savoir le cadmium, le fer, l'indium, le silicium, le bromoforme ainsi que seize hydrocarbures aromatiques polycycliques.

Pour la campagne de juin 2022, un dépassement de seuil est mesuré : pour le benzo (ghi) pérylène à la station EAU03. Pour ce paramètre mesuré sur les autres stations, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil. Ces HAPs sont principalement libérés lors de combustion, souvent incomplète, d'huile, d'essence, de fioul, de charbon de bois ou encore de cigarette (INERIS, 2022, 2021a, 2021b, 2019, 2016).

Outre ces valeurs, les résultats sont similaires entre toutes les stations.

Tableau 13 : Résultats des analyses de la campagne de juin 2022.

		Limites de	Valous do covil			R	tésultats de	s analyses	de juin 202	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Chlorophylle a	0,1 μg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Aluminium	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	369	369	368	370	370	375	369	365	371
Sels	Chlore	0,03 mg/L	Pas de seuil	0,19	0,09	0,14	0,16	0,07	0,04	0,13	0,11	0,14

		Limites de	Valaur da aquil			R	ésultats de	es analyses	de juin 202	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Sodium	1 mg/L	Pas de seuil	10100	10000	9880	9990	10000	10100	10100	10000	10100
	Fluorures	0,05 mg/L	Pas de seuil	0,66	0,66	0,69	0,69	0,67	0,7	0,67	0,66	0,67
	Sulfates	1 mg/L	Pas de seuil	2580	2580	2620	2600	2580	2630	2580	2620	2640
	COT	0,5 mg/L	Classes d'état	1,1	1,3	1,2	1,1	1,2	0,94	1,1	1,2	1,1
	Azote global	0,1 µmol/l	Classes d'état	0,86	2,2	1,1	1,1	0,79	1	1,3	0,92	0,96
	Azote global	0,0014 mg/L		0,0533	0,1341	0,0688	0,0657	0,049	0,0639	0,0831	0,057	0,0595
	Nitrites	0,0023 mg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Millies	0,05 µmol/l		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nitrates	0,1 µmol/l		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Nutriments	Miliales	0,0062 mg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Ammonium	0,1 µmol/l		0,78	2	1	0,97	0,72	0,94	1,2	0,83	0,87
	Ammonium	0,0018 mg/L	Classes d'état	0,0142	0,0353	0,0184	0,0174	0,013	0,017	0,0221	0,015	0,0158
		0,1 µmol/l	Pas de seuil	0,14	0,14	0,13	0,29	0,77	0,19	0,13	0.45	0,15
	Orthophoenhatee	, I		0,11	0,14	0,13	0,23	٠,	0,10	0,13	0,15	0,15
	Orthophosphates	0,0095 mg/L	Pas de seuil	0,0137	0,14	0,13	0,028	0,0728	0,0181	0,13	0,15	0,15
	Orthophosphates Silicium	<u> </u>								<u> </u>		
		0,0095 mg/L	Pas de seuil	0,0137	0,0131	0,0128	0,028	0,0728	0,0181	0,0128	0,0141	0,0142
	Silicium	0,0095 mg/L 0,2 mg/L	Pas de seuil Pas de seuil	0,0137 <lq< th=""><th>0,0131 <lq< th=""><th>0,0128 <lq< th=""><th>0,028 <lq< th=""><th>0,0728 <lq< th=""><th>0,0181 <lq< th=""><th>0,0128 <lq< th=""><th>0,0141 <lq< th=""><th>0,0142 <lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,0131 <lq< th=""><th>0,0128 <lq< th=""><th>0,028 <lq< th=""><th>0,0728 <lq< th=""><th>0,0181 <lq< th=""><th>0,0128 <lq< th=""><th>0,0141 <lq< th=""><th>0,0142 <lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,0128 <lq< th=""><th>0,028 <lq< th=""><th>0,0728 <lq< th=""><th>0,0181 <lq< th=""><th>0,0128 <lq< th=""><th>0,0141 <lq< th=""><th>0,0142 <lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,028 <lq< th=""><th>0,0728 <lq< th=""><th>0,0181 <lq< th=""><th>0,0128 <lq< th=""><th>0,0141 <lq< th=""><th>0,0142 <lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,0728 <lq< th=""><th>0,0181 <lq< th=""><th>0,0128 <lq< th=""><th>0,0141 <lq< th=""><th>0,0142 <lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,0181 <lq< th=""><th>0,0128 <lq< th=""><th>0,0141 <lq< th=""><th>0,0142 <lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	0,0128 <lq< th=""><th>0,0141 <lq< th=""><th>0,0142 <lq< th=""></lq<></th></lq<></th></lq<>	0,0141 <lq< th=""><th>0,0142 <lq< th=""></lq<></th></lq<>	0,0142 <lq< th=""></lq<>
	Silicium Acénaphtène	0,0095 mg/L 0,2 mg/L 0,005 μg/L	Pas de seuil Pas de seuil Pas de seuil	0,0137 <lq <lq< th=""><th>0,0131 <lq <lq< th=""><th>0,0128 <lq <lq< th=""><th>0,028 <lq <lq< th=""><th>0,0728 <lq <lq< th=""><th>0,0181 <lq <lq< th=""><th>0,0128 <lq <lq< th=""><th>0,0141 <lq <lq< th=""><th>0,0142 <lq <lq< th=""></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq 	0,0131 <lq <lq< th=""><th>0,0128 <lq <lq< th=""><th>0,028 <lq <lq< th=""><th>0,0728 <lq <lq< th=""><th>0,0181 <lq <lq< th=""><th>0,0128 <lq <lq< th=""><th>0,0141 <lq <lq< th=""><th>0,0142 <lq <lq< th=""></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq 	0,0128 <lq <lq< th=""><th>0,028 <lq <lq< th=""><th>0,0728 <lq <lq< th=""><th>0,0181 <lq <lq< th=""><th>0,0128 <lq <lq< th=""><th>0,0141 <lq <lq< th=""><th>0,0142 <lq <lq< th=""></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq 	0,028 <lq <lq< th=""><th>0,0728 <lq <lq< th=""><th>0,0181 <lq <lq< th=""><th>0,0128 <lq <lq< th=""><th>0,0141 <lq <lq< th=""><th>0,0142 <lq <lq< th=""></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq 	0,0728 <lq <lq< th=""><th>0,0181 <lq <lq< th=""><th>0,0128 <lq <lq< th=""><th>0,0141 <lq <lq< th=""><th>0,0142 <lq <lq< th=""></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq 	0,0181 <lq <lq< th=""><th>0,0128 <lq <lq< th=""><th>0,0141 <lq <lq< th=""><th>0,0142 <lq <lq< th=""></lq<></lq </th></lq<></lq </th></lq<></lq </th></lq<></lq 	0,0128 <lq <lq< th=""><th>0,0141 <lq <lq< th=""><th>0,0142 <lq <lq< th=""></lq<></lq </th></lq<></lq </th></lq<></lq 	0,0141 <lq <lq< th=""><th>0,0142 <lq <lq< th=""></lq<></lq </th></lq<></lq 	0,0142 <lq <lq< th=""></lq<></lq
	Silicium Acénaphtène Acénaphthylène	0,0095 mg/L 0,2 mg/L 0,005 μg/L 0,005 μg/L	Pas de seuil Pas de seuil Pas de seuil Pas de seuil	0,0137 <lq <lq <lq< th=""><th>0,0131 <lq <lq <lq< th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,028 <lq <lq <lq< th=""><th>0,0728 <lq <lq <lq< th=""><th>0,0181 <lq <lq <lq< th=""><th>0,0128 <lq <lq <lq< th=""><th>0,0141 <lq <lq <lq< th=""><th>0,0142 <lq <lq <lq< th=""></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq></th></lq<></lq </lq </th></lq<></lq </lq 	0,0131 <lq <lq <lq< th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,028 <lq <lq <lq< th=""><th>0,0728 <lq <lq <lq< th=""><th>0,0181 <lq <lq <lq< th=""><th>0,0128 <lq <lq <lq< th=""><th>0,0141 <lq <lq <lq< th=""><th>0,0142 <lq <lq <lq< th=""></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq></th></lq<></lq </lq 	0,0128 <lq <lq="" <lq<="" th=""><th>0,028 <lq <lq <lq< th=""><th>0,0728 <lq <lq <lq< th=""><th>0,0181 <lq <lq <lq< th=""><th>0,0128 <lq <lq <lq< th=""><th>0,0141 <lq <lq <lq< th=""><th>0,0142 <lq <lq <lq< th=""></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq>	0,028 <lq <lq <lq< th=""><th>0,0728 <lq <lq <lq< th=""><th>0,0181 <lq <lq <lq< th=""><th>0,0128 <lq <lq <lq< th=""><th>0,0141 <lq <lq <lq< th=""><th>0,0142 <lq <lq <lq< th=""></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq 	0,0728 <lq <lq <lq< th=""><th>0,0181 <lq <lq <lq< th=""><th>0,0128 <lq <lq <lq< th=""><th>0,0141 <lq <lq <lq< th=""><th>0,0142 <lq <lq <lq< th=""></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq 	0,0181 <lq <lq <lq< th=""><th>0,0128 <lq <lq <lq< th=""><th>0,0141 <lq <lq <lq< th=""><th>0,0142 <lq <lq <lq< th=""></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq 	0,0128 <lq <lq <lq< th=""><th>0,0141 <lq <lq <lq< th=""><th>0,0142 <lq <lq <lq< th=""></lq<></lq </lq </th></lq<></lq </lq </th></lq<></lq </lq 	0,0141 <lq <lq <lq< th=""><th>0,0142 <lq <lq <lq< th=""></lq<></lq </lq </th></lq<></lq </lq 	0,0142 <lq <lq <lq< th=""></lq<></lq </lq
	Silicium Acénaphtène Acénaphthylène Anthracène	0,0095 mg/L 0,2 mg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L	Pas de seuil Pas de seuil Pas de seuil Pas de seuil 0,1	0,0137 <lq <lq <lq <lq< th=""><th>0,0131 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq<></lq </lq </lq 	0,0131 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0128 <lq <lq="" <lq<="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq>	0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq>	0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq>	0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq>	0,0142 <lq <lq="" <lq<="" th=""></lq>
НАР	Silicium Acénaphtène Acénaphthylène Anthracène Benzo(a)anthracène	0,0095 mg/L 0,2 mg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L	Pas de seuil Pas de seuil Pas de seuil Pas de seuil 0,1 Pas de seuil	0,0137 <lq <lq="" <lq<="" th=""><th>0,0131 <lq <lq="" <lq<="" th=""><th>0,0128 <lq 0,007<="" <lq="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0131 <lq <lq="" <lq<="" th=""><th>0,0128 <lq 0,007<="" <lq="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0128 <lq 0,007<="" <lq="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0728 <lq <lq="" <lq<="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq></th></lq>	0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq></th></lq>	0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq></th></lq>	0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <lq="" <lq<="" th=""></lq></th></lq>	0,0142 <lq <lq="" <lq<="" th=""></lq>
НАР	Silicium Acénaphtène Acénaphthylène Anthracène Benzo(a)anthracène Benzo(a)pyrène	0,0095 mg/L 0,2 mg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L	Pas de seuil Pas de seuil Pas de seuil Pas de seuil 0,1 Pas de seuil 0,027	0,0137 <lq <lq="" <lq<="" th=""><th>0,0131 <lq <lq="" <lq<="" th=""><th>0,0128 <lq 0,007<="" <lq="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0131 <lq <lq="" <lq<="" th=""><th>0,0128 <lq 0,007<="" <lq="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0128 <lq 0,007<="" <lq="" th=""><th>0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,028 <lq <lq="" <lq<="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq>	0,0181 <lq <lq="" <lq<="" th=""><th>0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq>	0,0128 <lq <lq="" <lq<="" th=""><th>0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq>	0,0141 <lq <lq="" <lq<="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq>	0,0142 <lq <l<="" <lq="" th=""></lq>
НАР	Silicium Acénaphtène Acénaphthylène Anthracène Benzo(a)anthracène Benzo(a)pyrène Benzo(b)fluoranthène	0,0095 mg/L 0,2 mg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L 0,005 μg/L	Pas de seuil Pas de seuil Pas de seuil Pas de seuil 0,1 Pas de seuil 0,027 0,017	0,0137 <lq <l<="" <lq="" th=""><th>0,0131 <lq <l<="" <lq="" th=""><th>0,0128 <lq 0,007="" 0,007<="" <lq="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0131 <lq <l<="" <lq="" th=""><th>0,0128 <lq 0,007="" 0,007<="" <lq="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0128 <lq 0,007="" 0,007<="" <lq="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq>	0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq>	0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq>	0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq>	0,0142 <lq <l<="" <lq="" th=""></lq>
НАР	Silicium Acénaphtène Acénaphthylène Anthracène Benzo(a)anthracène Benzo(a)pyrène Benzo(b)fluoranthène Benzo(k)fluoranthène	0,0095 mg/L 0,2 mg/L 0,005 μg/L	Pas de seuil Pas de seuil Pas de seuil Pas de seuil 0,1 Pas de seuil 0,027 0,017 0,017	0,0137 <lq <l<="" <lq="" th=""><th>0,0131 <lq <l<="" <lq="" th=""><th>0,0128 <lq 0,007="" 0,014="" <lq="" <lq<="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0131 <lq <l<="" <lq="" th=""><th>0,0128 <lq 0,007="" 0,014="" <lq="" <lq<="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0128 <lq 0,007="" 0,014="" <lq="" <lq<="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq>	0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq>	0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq>	0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq>	0,0142 <lq <l<="" <lq="" th=""></lq>
НАР	Silicium Acénaphtène Acénaphthylène Anthracène Benzo(a)anthracène Benzo(b)fluoranthène Benzo(k)fluoranthène Benzo(ghi)pérylène	0,0095 mg/L 0,2 mg/L 0,005 μg/L	Pas de seuil Pas de seuil Pas de seuil Pas de seuil O,1 Pas de seuil 0,027 0,017 0,017	0,0137 <lq <l<="" <lq="" th=""><th>0,0131 <lq <l<="" <lq="" th=""><th>0,0128 <lq 0,0044<="" 0,007="" 0,014="" <lq="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0131 <lq <l<="" <lq="" th=""><th>0,0128 <lq 0,0044<="" 0,007="" 0,014="" <lq="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0128 <lq 0,0044<="" 0,007="" 0,014="" <lq="" th=""><th>0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,028 <lq <l<="" <lq="" th=""><th>0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq></th></lq>	0,0728 <lq <l<="" <lq="" th=""><th>0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq></th></lq>	0,0181 <lq <l<="" <lq="" th=""><th>0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq></th></lq>	0,0128 <lq <l<="" <lq="" th=""><th>0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq></th></lq>	0,0141 <lq <l<="" <lq="" th=""><th>0,0142 <lq <l<="" <lq="" th=""></lq></th></lq>	0,0142 <lq <l<="" <lq="" th=""></lq>

		Limites de	Valous do covil			R	Résultats de	s analyses	de juin 202	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Fluorène	0,005 μg/L	Pas de seuil	0,005	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,219</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,219</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,219</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,219</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,219</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	0,219	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Naphtalène	0,05 μg/L	130	0,82	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,63</th><th><lq< th=""><th>0,84</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,63</th><th><lq< th=""><th>0,84</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,63</th><th><lq< th=""><th>0,84</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,63</th><th><lq< th=""><th>0,84</th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,63</th><th><lq< th=""><th>0,84</th></lq<></th></lq<>	0,63	<lq< th=""><th>0,84</th></lq<>	0,84
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< th=""><th>0,011</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,006</th><th>0,473</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,011	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,006</th><th>0,473</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,006</th><th>0,473</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,006</th><th>0,473</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	0,006	0,473	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th>0,014</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,039</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,014</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,039</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,014	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,039</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,039</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,039</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	0,039	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	54	60	160	14	11	12	12	64	20
	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

3.2.4 Résultats pour la campagne de juillet 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en juillet 2022.

Pour tous les paramètres présentant un seuil, excepté pour le benzo (ghi) pérylène, aucun ne présente de valeur supérieure ou égale au seuil. Pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil. Ces HAPs sont principalement libérés lors de combustion, souvent incomplète, d'huile, d'essence, de fioul, de charbon de bois ou encore de cigarette (INERIS, 2022, 2021a, 2021b, 2019, 2016).

Outre ces valeurs, les résultats sont similaires entre toutes les stations.

Tableau 14 : Résultats des analyses de la campagne de juillet 2022.

		Limites de	Valaur da aasil			R	ésultats des	s analyses	de juillet 20	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Chlorophylle a	0,1 μg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Aluminium	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	402	453	399	407	400	402	406	411	401
	Chlore	0,03 mg/L	Pas de seuil	0,06	0,06	0,04	0,06	0,04	0,05	0,06	0,07	0,04
Sels	Sodium	1 mg/L	Pas de seuil	10800	11000	10800	10800	11000	10900	11000	10900	11000
	Fluorures	0,05 mg/L	Pas de seuil	0,74	0,7	0,67	0,69	0,66	0,68	0,68	0,7	0,66

		Limites de	Valous do covil			R	ésultats des	s analyses	de juillet 20	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Sulfates	1 mg/L	Pas de seuil	2910	2860	2980	2940	2780	2750	2950	2980	2900
	СОТ	0,5 mg/L	Classes d'état	1,2	1,2	1,1	1	1,1	1,1	1,1	1,2	1,1
	Azote global	0,1 µmol/l	Classes d'état	2,9	1,2	1,9	1,3	0,99	1,8	2,1	1,4	1
	Azote global	0,0014 mg/L		0,1767	0,0725	0,1178	0,08	0,0614	0,111	0,1283	0,0874	0,0631
	Nitrites	0,0023 mg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,0106</th><th><lq< th=""><th>0,0091</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,0106</th><th><lq< th=""><th>0,0091</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,0106</th><th><lq< th=""><th>0,0091</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,0106	<lq< th=""><th>0,0091</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	0,0091	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nitites	0,05 µmol/l		<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,23</th><th><lq< th=""><th>0,2</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,23</th><th><lq< th=""><th>0,2</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,23</th><th><lq< th=""><th>0,2</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,23	<lq< th=""><th>0,2</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	0,2	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nitrates	0,1 μmol/l		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Nutriments	iviliales	0,0062 mg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Ammonium	0,1 µmol/l		2,6	1,1	1,7	0,94	0,91	1,4	1,9	1,3	0,93
	Ammonium	0,0018 mg/L	Classes d'état	0,0469	0,0193	0,0312	0,017	0,0164	0,0261	0,034	0,0232	0,0167
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,12	0,12	0,11	0,64	0,13	1,7	0,1	0,13	<lq< th=""></lq<>
	Orthophosphales	0,0095 mg/L	Pas de seuil	0,0114	0,0112	0,01	0,0607	0,012	0,1628	0,0096	0,0122	<0,010
	Silicium	0,2 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,47</th><th>0,46</th><th>0,47</th><th>0,45</th><th>0,53</th><th>0,51</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,47</th><th>0,46</th><th>0,47</th><th>0,45</th><th>0,53</th><th>0,51</th></lq<></th></lq<>	<lq< th=""><th>0,47</th><th>0,46</th><th>0,47</th><th>0,45</th><th>0,53</th><th>0,51</th></lq<>	0,47	0,46	0,47	0,45	0,53	0,51
	Acénaphtène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Anthracène	0,005 μg/L	0,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(a)pyrène	0,005 μg/L	0,027	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
HAP	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(ghi)pérylène	0,001 μg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrysène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Dibenzo(a,h)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluoranthène	0,005 μg/L	0,0063	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

		Limites de	Valous do covil			R	ésultats de	s analyses	de juillet 20	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Naphtalène	0,05 μg/L	2	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Phénanthrène 0,005 μg/l	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
		0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	29	16	14	15	19	15	16	16	26
	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,18</th></lq<></th></lq<>	<lq< th=""><th>0,18</th></lq<>	0,18
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

3.2.5 Résultats pour la campagne d'août 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en août 2022.

Pour tous les paramètres présentant un seuil, excepté pour le benzo (ghi) pérylène, aucun ne présente de valeur supérieure ou égale au seuil. Pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil.

Outre ces valeurs, les résultats sont similaires entre toutes les stations.

Tableau 15 : Résultats des analyses de la campagne d'août 2022.

		Limites de				F	Résultats de	es analyses	d'août 202	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Chlorophylle a	0,1 μg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,3</th><th>0,1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,3</th><th>0,1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,3</th><th>0,1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,3	0,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th>0,2</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,2</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,2	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	0,1	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Aluminium	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th>1,1</th><th>1</th><th><lq< th=""><th>1,4</th><th>1,9</th><th>1</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>1,1</th><th>1</th><th><lq< th=""><th>1,4</th><th>1,9</th><th>1</th><th><lq< th=""></lq<></th></lq<></th></lq<>	1,1	1	<lq< th=""><th>1,4</th><th>1,9</th><th>1</th><th><lq< th=""></lq<></th></lq<>	1,4	1,9	1	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th>1,1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1</th><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>1,1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1</th><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	1,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1</th><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>1</th><th>1,1</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>1</th><th>1,1</th></lq<></th></lq<>	<lq< th=""><th>1</th><th>1,1</th></lq<>	1	1,1
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th>4.3</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>4.3</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	4.3	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	4,2	<lq< th=""><th>6,8</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	6,8	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	375	377	374	375	420	376	377	374	376
	Chlore	0,03 mg/L	Pas de seuil	0,03	0,05	0,03	0,03	0,03	0,05	0,17	0,03	0,03
Sels	Sodium	1 mg/L	Pas de seuil	10500	10700	10500	10600	10700	10600	10600	10700	10600
	Fluorures	0,05 mg/L	Pas de seuil	0,69	0,69	0,7	0,68	0,68	0,67	0,66	0,66	0,67
	Sulfates	1 mg/L	Pas de seuil	2750	2820	2850	2800	2830	2760	2810	2850	2840

		Limites de				F	Résultats de	es analyses	d'août 202	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	COT	0,5 mg/L	Classes d'état	1,2	1,6	1,2	1,2	1,3	1,4	1,3	1,5	1,3
	Azote global	0,1 µmol/l	Classes d'état	3,2	0,59	0,34	0,77	1,5	0,86	4,9	1,2	1,7
	Azote giobai	0,0014 mg/L		0,1994	0,0364	0,0212	0,0478	0,096	0,0533	0,3016	0,0747	0,1032
	Nitrites	0,0023 mg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nitites	0,05 µmol/l		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
NI	Nitrates	0,1 µmol/l		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Nutriments	Milatos	0,0062 mg/L	Classes d'état	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Ammonium	0,1 µmol/l		2,9	0,53	0,29	0,67	1,4	0,77	4,4	1,1	1,5
	7 Willion William	0,0018 mg/L	Classes d'état	0,052	0,0095	0,0052	0,0121	0,0247	0,014	0,0795	0,0194	0,0269
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,14	0,14	0,15	0,18	0,13	0,4	1,5	0,13	0,13
		0,0095 mg/L	Pas de seuil	0,013	0,0131	0,014	0,0167	0,0121	0,0384	0,1458	0,0125	0,0123
	Silicium	0,2 mg/L	Pas de seuil	0,36	0,47	0,49	0,46	<0,20	0,45	0,37	0,5	0,4
	Acénaphtène	0,005 µg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Anthracène	0,005 µg/L	0,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(a)pyrène	0,005 µg/L	0,027	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
HAP	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
ПАР	Benzo(ghi)pérylène	0,001 µg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrysène	0,005 µg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Dibenzo(a,h)anthracène	0,005 µg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluoranthène	0,005 µg/L	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,007</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,007</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,007</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,007</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,007</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	0,007	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Naphtalène	0,05 μg/L	130	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

		Limites de	.,			Ī	Résultats de	es analyses	d'août 202	22		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,019</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,019</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,019</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,019</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,019</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,019	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Pyrène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	11	10	10	12	18	17	12	13	15
	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

3.2.6 Résultats pour la campagne de septembre 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en septembre 2022.

En septembre, les teneurs en chlorophylle a et en phéopigments n'ont pas été mesurées par le laboratoire en charge des analyses (erreur du laboratoire).

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil. De plus, les résultats sont similaires entre toutes les stations. Cependant, pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil.

Tableau 16 : Résultats des analyses de la campagne de septembre 2022.

		Limites de	Valaur da aasil			Rés	ultats des a	nalyses de	septembre	2022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Aluminium	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	1,3	1,4	1,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<>	<lq< th=""><th>1,1</th></lq<>	1,1
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	391	390	390	385	391	387	393	389	386
	Chlore	0,03 mg/L	Pas de seuil	0,06	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,09
Sels	Sodium	1 mg/L	Pas de seuil	10800	10800	10900	11100	10900	10900	11100	11000	11000
	Fluorures	0,05 mg/L	Pas de seuil	0,67	0,66	0,86	0,33	0,33	0,33	0,33	0,33	0,34
	Sulfates	1 mg/L	Pas de seuil	2840	2880	2850	2840	2780	2680	2820	2940	2930
	СОТ	0,5 mg/L	Classes d'état	1,3	1,3	1,2	1,2	1,3	1,2	1,2	1,3	1,3
Nutriments	Azote global	0,1 µmol/l	Classes d'état	2,3	2,7	2,8	6,5	2,1	2,2	2,2	3,1	6,4

		Limites de	Valeur de seuil			Rés	ultats des a	ınalyses de	septembre	2022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valedi de seuli NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
		0,0014 mg/L		0,142	0,1686	0,1761	0,4018	0,1302	0,1339	0,1383	0,1934	0,3968
	Nitrites	0,0023 mg/L	Classes d'état	0,0136	0,019	0,0159	0,0143	0,0196	0,0181	0,0203	0,0194	0,0178
	Milles	0,05 µmol/l		0,3	0,41	0,35	0,31	0,43	0,39	0,44	0,42	0,39
	Nitrates	0,1 µmol/l		1,8	1,9	1,9	5,3	1,5	1,5	1,5	1,5	1,5
	Iviliales	0,0062 mg/L	Classes d'état	0,1107	0,1192	0,1169	0,331	0,0924	0,0899	0,0899	0,0942	0,0949
	Ammonium	0,1 µmol/l		0,17	0,14	0,35	0,25	<0,1	0,12	0,14	0,9	3.9
	Ammonium	0,0018 mg/L	Classes d'état	0,003	0,0025	0,0063	0,0044	<0,002	0,0022	0,0026	0,0163	0,0707
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,11	0,11	0,12	0,15	<0,1	0,22	0,11	<0,1	0,16
		0,0095 mg/L	Pas de seuil	0,0106	0,0104	0,011	0,0141	<lq< th=""><th>0,0205</th><th>0,0108</th><th><0,010</th><th>0,0154</th></lq<>	0,0205	0,0108	<0,010	0,0154
	Silicium	0,2 mg/L	Pas de seuil	0,49	0,51	0,66	0,57	0,5	0,56	0,49	0,5	0,62
	Acénaphtène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Anthracène	0,005 μg/L	0,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(a)pyrène	0,005 μg/L	0,027	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
HAP	Benzo(ghi)pérylène	0,001 μg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrysène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Dibenzo(a,h)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluoranthène	0,005 μg/L	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 µg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Naphtalène	0,05 µg/L	130	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

		Limites de	Valeur de seuil			Rés	ultats des a	ınalyses de	septembre	2022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuli NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	83	18	22	28	65	33	17	18	27
polidarito	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

3.2.7 Résultats pour la campagne d'octobre 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en octobre 2022.

Les teneurs en chlorophylle a et en phéopigments n'ont pas été mesurées par le laboratoire en charge des analyses (erreur du laboratoire).

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil. De plus, les résultats sont similaires entre toutes les stations. Cependant, pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil.

Tableau 17 : Résultats des analyses de la campagne d'octobre 2022.

		Limites de	Valeur de seuil			R	ésultats des	s analyses	d'octobre 2	022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Aluminium	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	407	404	406	407	393	410	405	402	400
	Chlore	0,03 mg/L	Pas de seuil	0,05	0,05	0,04	<lq< th=""><th>0,1</th><th>0,04</th><th>0,03</th><th>0,05</th><th>0,04</th></lq<>	0,1	0,04	0,03	0,05	0,04
Sels	Sodium	1 mg/L	Pas de seuil	11300	11100	11300	11300	11300	11300	11600	10800	11500
	Fluorures	0,05 mg/L	Pas de seuil	0,68	0,66	0,61	0,65	0,67	0,66	0,65	0,65	0,65
_	Sulfates	1 mg/L	Pas de seuil	2730	2730	2710	2700	2720	2910	2720	2850	2690
	COT	0,5 mg/L	Classes d'état	1,3	1,2	1,1	1,1	1,4	1,2	<lq< th=""><th>1,2</th><th>1,3</th></lq<>	1,2	1,3
Nutriments	Azote global	0,1 µmol/l	Classes d'état	3,6	5,8	<lq< th=""><th>3</th><th>3</th><th>15</th><th>2,9</th><th>3,2</th><th>2,4</th></lq<>	3	3	15	2,9	3,2	2,4

		Limites de	Valeur de seuil			R	ésultats de:	s analyses	d'octobre 2	022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
		0,0014 mg/L		0,2259	0,357	<lq< th=""><th>0,189</th><th>0,1873</th><th>0,9031</th><th>0,1829</th><th>0,2</th><th>0,1488</th></lq<>	0,189	0,1873	0,9031	0,1829	0,2	0,1488
	Nitrites	0,0023 mg/L	Classes d'état	0,0225	<lq< th=""><th>0,0183</th><th>0,0135</th><th>0,0143</th><th>0,0151</th><th>0,0316</th><th>0,0188</th><th>0,0225</th></lq<>	0,0183	0,0135	0,0143	0,0151	0,0316	0,0188	0,0225
	Millies	0,05 µmol/l		0,49	<lq< th=""><th>0,4</th><th>0,29</th><th>0,31</th><th>0,33</th><th>0,69</th><th>0,41</th><th>0,49</th></lq<>	0,4	0,29	0,31	0,33	0,69	0,41	0,49
	Nitrates	0,1 µmol/l		1,4	1,3	<lq< th=""><th>1,5</th><th>1,5</th><th>12</th><th>1,8</th><th>1,3</th><th>1,4</th></lq<>	1,5	1,5	12	1,8	1,3	1,4
	Miliales	0,0062 mg/L	Classes d'état	0,0884	0,0825	<lq< th=""><th>0,0917</th><th>0,0944</th><th>0,766</th><th>0,1105</th><th>0,0779</th><th>0,0847</th></lq<>	0,0917	0,0944	0,766	0,1105	0,0779	0,0847
	Ammonium	0,1 µmol/l		1,1	2,9	<lq< th=""><th>0,5</th><th>0,64</th><th>0,26</th><th>0,24</th><th>0,3</th><th><lq< th=""></lq<></th></lq<>	0,5	0,64	0,26	0,24	0,3	<lq< th=""></lq<>
	Ammondm	0,0018 mg/L	Classes d'état	0,019	0,0528	<lq< th=""><th>0,009</th><th>0,0115</th><th>0,0047</th><th>0,0044</th><th>0,0054</th><th><lq< th=""></lq<></th></lq<>	0,009	0,0115	0,0047	0,0044	0,0054	<lq< th=""></lq<>
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,19	0,17	0,12	0,35	0,16	0,15	0,11	0,11	0,11
	Orthophosphates	0,0095 mg/L	Pas de seuil	0,0181	0,0157	0,0113	0,0329	0,0149	0,0147	0,0104	0,0109	0,01
	Silicium	0,2 mg/L	Pas de seuil	0,5	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,53</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,53</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,53</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,53</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,53</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,53</th><th><lq< th=""></lq<></th></lq<>	0,53	<lq< th=""></lq<>
	Acénaphtène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Anthracène	0,005 μg/L	0,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(a)pyrène	0,005 μg/L	0,027	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(ghi)pérylène	0,001 μg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
HAP	Chrysène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Dibenzo(a,h)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluoranthène	0,005 μg/L	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Naphtalène	0,05 μg/L	130	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

		Limites de	Valour do covil			R	ésultats des	s analyses	d'octobre 2	022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	16	16	15	14	<lq< th=""><th>21</th><th>13</th><th>16</th><th><lq< th=""></lq<></th></lq<>	21	13	16	<lq< th=""></lq<>
	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

3.2.8 Résultats pour la campagne de novembre 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en novembre 2022.

Les teneurs en chlorophylle a et en phéopigments n'ont pas été mesurées par le laboratoire en charge des analyses (erreur du laboratoire).

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil. De plus, les résultats sont similaires entre toutes les stations. Cependant, pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil.

Tableau 18 : Résultats des analyses de la campagne de novembre 2022.

		Limites de	Valeur de seuil			R	ésultats de	s analyses	de novemb	ore 2022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Aluminium	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<>	<lq< th=""><th>Non mesuré</th></lq<>	Non mesuré
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<>	<lq< th=""><th>Non mesuré</th></lq<>	Non mesuré
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>Non mesuré</th></lq<></th></lq<>	<lq< th=""><th>Non mesuré</th></lq<>	Non mesuré
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th>1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>15</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>15</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>15</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>15</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>15</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>15</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>15</th></lq<></th></lq<>	<lq< th=""><th>15</th></lq<>	15
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	375	382	373	374	375	370	386	370	371
Sels	Chlore	0,03 mg/L	Pas de seuil	0,07	<lq< th=""><th>0,1</th><th>0,04</th><th>0,07</th><th>0,09</th><th>0,05</th><th>0,06</th><th>0,08</th></lq<>	0,1	0,04	0,07	0,09	0,05	0,06	0,08
	Sodium	1 mg/L	Pas de seuil	10400	10500	10500	10500	10600	10500	10600	10400	10500

		Limites de	Valeur de seuil			R	ésultats de	s analyses	de novemb	ore 2022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Fluorures	0,05 mg/L	Pas de seuil	0,68	0,72	0,7	0,71	0,65	0,69	0,71	0,65	0,66
	Sulfates	1 mg/L	Pas de seuil	2900	2930	2910	2940	2920	2880	2890	2920	2920
	СОТ	0,5 mg/L	Classes d'état	1,2	1,2	1,1	1,1	0,98	1,2	1	1,2	1,2
	Azote global	0,1 µmol/l	Classes d'état	0,9	0,89	1,1	1	2,6	1,6	3.1	2,6	2,2
	7120te global	0,0014 mg/L		0,0559	0,0553	0,0688	0,0622	0,1638	0,1022	0,1902	0,1632	0,1334
	Nitrites	0,0023 mg/L	Classes d'état	0,0286	0,0274	0,0229	0,0186	0,0366	0,017	0,0239	0,0243	0,0143
	Nunes	0,05 µmol/l		0,62	0,59	0,5	0,4	0,8	0,37	0,52	0,53	0,31
	Nitrates	0,1 µmol/l		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,81</td><td>0,76</td><td>1,6</td><td>1,2</td><td>0,92</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,81</td><td>0,76</td><td>1,6</td><td>1,2</td><td>0,92</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,81</td><td>0,76</td><td>1,6</td><td>1,2</td><td>0,92</td></lq<></td></lq<>	<lq< td=""><td>0,81</td><td>0,76</td><td>1,6</td><td>1,2</td><td>0,92</td></lq<>	0,81	0,76	1,6	1,2	0,92
Nutriments	Milatos	0,0062 mg/L	Classes d'état	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0503</td><td>0,0472</td><td>0,0967</td><td>0,0764</td><td>0,0572</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,0503</td><td>0,0472</td><td>0,0967</td><td>0,0764</td><td>0,0572</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,0503</td><td>0,0472</td><td>0,0967</td><td>0,0764</td><td>0,0572</td></lq<></td></lq<>	<lq< td=""><td>0,0503</td><td>0,0472</td><td>0,0967</td><td>0,0764</td><td>0,0572</td></lq<>	0,0503	0,0472	0,0967	0,0764	0,0572
	Ammonium	0,1 µmol/l		0,2	0,22	0,51	0,51	<lq< td=""><td><lq< td=""><td>0,19</td><td>0,1</td><td>0,41</td></lq<></td></lq<>	<lq< td=""><td>0,19</td><td>0,1</td><td>0,41</td></lq<>	0,19	0,1	0,41
	Ammoniam	0,0018 mg/L	Classes d'état	0,0036	0,0039	0,0092	0,0092	<lq< th=""><th><lq< th=""><th>0,0035</th><th>0,0019</th><th>0,0075</th></lq<></th></lq<>	<lq< th=""><th>0,0035</th><th>0,0019</th><th>0,0075</th></lq<>	0,0035	0,0019	0,0075
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,1	0,17	0,1	0,1	1,2	0,12	0,16	1	1,2
	Orthophosphates	0,0095 mg/L	Pas de seuil	0,0099	0,0158	0,0097	0,0098	0,1176	0,0113	0,0155	0,0956	0,1169
	Silicium	0,2 mg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Acénaphtène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Anthracène	0,005 μg/L	0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
HAP	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(a)pyrène	0,005 μg/L	0,027	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

		Limites de	Valeur de seuil			R	ésultats de	s analyses	de novemb	ore 2022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Benzo(ghi)pérylène	0,001 μg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrysène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Dibenzo(a,h)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluoranthène	0,005 μg/L	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Naphtalène	0,05 μg/L	130	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	16	19	20	29	20	16	23	21	40
	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Bromoforme	0,5 µg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

3.2.9 Résultats pour la campagne de décembre 2022

Le tableau ci-dessous présente les valeurs des paramètres mesurés en décembre 2022.

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil, excepté le benzo (ghi) pérylène à la station EAU04. Toujours pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination pour les autres stations, car la limite de quantification est supérieure au seuil. Pour les autres paramètres, les résultats sont similaires entre toutes les stations.

Tableau 19 : Résultats des analyses de la campagne de décembre 2022.

		Limites de	Valeur de seuil			Rés	sultats des	analyses de	e décembre	2022		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Chlorophylle a	0,1 μg/L	Classes d'état	0,5	0,5	0,5	0,6	0,6	0,5	0,4	0,4	0,5
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<>	<lq< th=""><th>0,1</th></lq<>	0,1
	Aluminium	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>47</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>47</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>47</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>47</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>47</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>47</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>47</th></lq<></th></lq<>	<lq< th=""><th>47</th></lq<>	47
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3.8</th><th><lq< th=""><th>1,4</th><th><lq< th=""><th>4.4</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>3.8</th><th><lq< th=""><th>1,4</th><th><lq< th=""><th>4.4</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>3.8</th><th><lq< th=""><th>1,4</th><th><lq< th=""><th>4.4</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>3.8</th><th><lq< th=""><th>1,4</th><th><lq< th=""><th>4.4</th></lq<></th></lq<></th></lq<>	3.8	<lq< th=""><th>1,4</th><th><lq< th=""><th>4.4</th></lq<></th></lq<>	1,4	<lq< th=""><th>4.4</th></lq<>	4.4
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>1,1</th></lq<></th></lq<>	<lq< th=""><th>1,1</th></lq<>	1,1
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	378	380	376	377	379	378	386	378	385
Sels	Chlore	0,03 mg/L	Pas de seuil	0,05	0,07	0,03	<lq< th=""><th><lq< th=""><th>0,06</th><th><lq< th=""><th>0,09</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,06</th><th><lq< th=""><th>0,09</th><th><lq< th=""></lq<></th></lq<></th></lq<>	0,06	<lq< th=""><th>0,09</th><th><lq< th=""></lq<></th></lq<>	0,09	<lq< th=""></lq<>

Catégorie	Paramètre	Limites de quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (μg/L)	Résultats des analyses de décembre 2022									
				EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11	
	Sodium	1 mg/L	Pas de seuil	10100	10300	10300	10200	10200	10100	11100	10200	11100	
	Fluorures	0,05 mg/L	Pas de seuil	0,74	0,69	0,71	0,7	0,69	0,7	0,69	0,69	0,69	
	Sulfates	1 mg/L	Pas de seuil	2630	2590	2570	2560	2580	2580	2460	2510	2580	
Nutriments	СОТ	0,5 mg/L	Classes d'état	1,3	1,6	1,3	1,3	1,3	1,4	1,4	4,4	1,4	
	Azote global	0,1 µmol/l	Classes d'état	6,9	5,7	5,9	5,1	5,3	4,6	4,5	4,8	6,4	
		0,0014 mg/L		0,425	0,352	0,363	0,316	0,327	0,287	0,277	0,298	0,397	
	Nitrites	0,0023 mg/L	Classes d'état	0,032	0,031	0,032	0,033	0,036	0,034	0,037	0,032	0,029	
		0,05 µmol/l		0,69	0,67	0,69	0,71	0,77	0,74	0,81	0,7	0,64	
	Nitrates	0,1 µmol/l		4,3	4,5	4,5	3,9	4	3,5	3,3	3,7	5,7	
		0,0062 mg/L	Classes d'état	0,265	0,279	0,280	0,243	0,250	0,215	0,203	0,227	0,351	
	Ammonium	0,1 µmol/l		1,1	<lq< th=""><th>0,12</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,17</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,17</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,17</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,17</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,17</th></lq<></th></lq<>	<lq< th=""><th>0,17</th></lq<>	0,17	
		0,0018 mg/L	Classes d'état	0,020	<lq< th=""><th>0,002</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,003</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,002	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,003</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,003</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,003</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,003</th></lq<></th></lq<>	<lq< th=""><th>0,003</th></lq<>	0,003	
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,35	0,14	0,21	0,22	0,32	0,17	0,23	0,14	0,31	
		0,0095 mg/L	Pas de seuil	0,033	0,014	0,019	0,021	0,030	0,016	0,022	0,014	0,029	
	Silicium	0,2 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
НАР	Acénaphtène	0,005 µg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Anthracène	0,005 μg/L	0,1	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Benzo(a)pyrène	0,005 μg/L	0,027	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	

Catégorie	Paramètre	Limites de quantification laboratoire année 2022 - 2023	Valeur de seuil NQE-CMA (μg/L)	Résultats des analyses de décembre 2022									
				EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11	
	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Benzo(ghi)pérylène	0,001 μg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,0013</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,0013</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,0013</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,0013	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Chrysène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Dibenzo(a,h)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Fluoranthène	0,005 μg/L	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Naphtalène	0,05 μg/L	130	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	63	60	60	61	86	73	62	54	48	
	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>	

3.2.10 Résultats pour la campagne de janvier 2023

Le tableau ci-dessous présente les valeurs des paramètres mesurés en janvier 2023.

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil. De plus, les résultats sont similaires entre toutes les stations. Cependant, pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil.

Tableau 20 : Résultats des analyses de la campagne de janvier 2023.

		Limites de	Valeur de seuil			R	ésultats de	s analyses	de janvier 2	2023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Chlorophylle a	0,1 μg/L	Classes d'état	0,3	0,3	0,2	0,2	0,3	0,2	0,2	0,2	0,3
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	0,1	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Aluminium	10 μg/L	Pas de seuil	<100	<lq< th=""><th><100</th><th><100</th><th><100</th><th><100</th><th><lq< th=""><th><100</th><th><100</th></lq<></th></lq<>	<100	<100	<100	<100	<lq< th=""><th><100</th><th><100</th></lq<>	<100	<100
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><10</th><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><10</th><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><10</th><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<10	<10	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<10	<lq< th=""><th><lq< th=""><th><lq< th=""><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<10	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nickel	1 μg/L	34	<10	<lq< th=""><th><lq< th=""><th><lq< th=""><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<10	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><10</th><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><10</th><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><10</th><th><10</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<10	<10	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><100</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><100</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><100</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><100</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<100	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th>3.2</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	3.2	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	375	389	378	387	377	383	387	379	376
Sels	Chlore	0,03 mg/L	Pas de seuil	0,04	0,05	0,06	0,03	0,05	0,11	0,09	<0,03	0,04
	Sodium	1 mg/L	Pas de seuil	10600	11000	11200	11400	10800	11200	11200	11100	10800

		Limites de	Valeur de seuil			R	ésultats de	s analyses	de janvier 2	2023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Fluorures	0,05 mg/L	Pas de seuil	0,7	0,69	0,69	0,71	0,66	0,65	0,68	0,71	0,7
	Sulfates	1 mg/L	Pas de seuil	2690	183	2680	3070	202	198	183	3000	2690
	СОТ	0,5 mg/L	Classes d'état	1,3	1,3	1,3	1,5	1,3	1,4	1,3	1,5	1,3
	Azote global	0,1 µmol/l	Classes d'état	5	5,6	7	6,7	3,8	6,6	5,3	8,2	5
	Azote global	0,0014 mg/L		0,3075	0,3486	0,4356	0,4132	0,238	0,4116	0,3304	0,5083	0,3079
	Nitrites	0,0023 mg/L	Classes d'état	0,0032	0,0042	0,0211	0,0217	<lq< td=""><td>0,0215</td><td>0,0213</td><td>0,0237</td><td>0,0024</td></lq<>	0,0215	0,0213	0,0237	0,0024
	Millios	0,05 µmol/l		0,07	0,09	0,46	0,47	<lq< td=""><td>0,47</td><td>0,46</td><td>0,52</td><td>0,05</td></lq<>	0,47	0,46	0,52	0,05
	Nitrates	0,1 µmol/l		4,1	5,5	4,9	3,3	4,9	4,3	6,4	4,4	4,1
Nutriments	Timates	0,0062 mg/L	Classes d'état	0,2563	0,3391	0,3052	0,2043	0,3052	0,2674	0,3982	0,2735	0,2563
	Ammonium _	0,1 µmol/l		0,51	0,79	<lq< td=""><td>0,19</td><td><lq< td=""><td>0,18</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,19	<lq< td=""><td>0,18</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,18	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
		0,0018 mg/L	Classes d'état	0,0092	0,0143	<lq< td=""><td>0,0035</td><td><lq< td=""><td>0,0032</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,0035	<lq< td=""><td>0,0032</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,0032	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,37	0,28	0,26	0,22	0,23	0,16	0,26	0,27	0,37
	Granopridopridade	0,0095 mg/L	Pas de seuil	0,0353	0,0265	0,0251	0,0207	0,0221	0,0155	0,025	0,0257	0,0353
	Silicium	0,2 mg/L	Pas de seuil	0,75	0,71	0,75	0,69	0,76	0,73	0,73	0,74	0,75
	Acénaphtène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,006</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,006	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Anthracène	0,005 μg/L	0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
HAP	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(a)pyrène	0,005 μg/L	0,027	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

		Limites de	Valeur de seuil			R	ésultats de	s analyses	de janvier 2	2023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Benzo(ghi)pérylène	0,001 μg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrysène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Dibenzo(a,h)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluoranthène	0,005 μg/L	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Naphtalène	0,05 μg/L	130	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Autres micro-	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	61	15	17	14	74	14	26	22	14
•	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

3.2.11 Résultats pour la campagne de février 2023

Le tableau ci-dessous présente les valeurs des paramètres mesurés en février 2023.

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil. De plus, les résultats sont similaires entre toutes les stations. Cependant, pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil.

Tableau 21 : Résultats des analyses de la campagne de février 2023.

		Limites de	Valeur de seuil			R	Résultats de	s analyses	de février 2	2023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Chlorophylle a	0,1 μg/L	Classes d'état	0,5	0,4	0,3	0,3	0,3	0,2	0,2	0,3	0,5
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	0,1	<lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	0,1	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Aluminium	10 μg/L	Pas de seuil	14	12	16	15	18	19	13	16	12
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	1	<lq< th=""><th>1</th><th>1,2</th><th>1</th><th>1,1</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	1	1,2	1	1,1	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<1,0	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Calcium	10 mg/L	Pas de seuil	385	378	379	378	377	384	382	373	376
Sels	Chlore	0,03 mg/L	Pas de seuil	0,05	<lq< th=""><th>0,05</th><th>0,03</th><th>0,04</th><th>0,03</th><th><lq< th=""><th><lq< th=""><th>0,04</th></lq<></th></lq<></th></lq<>	0,05	0,03	0,04	0,03	<lq< th=""><th><lq< th=""><th>0,04</th></lq<></th></lq<>	<lq< th=""><th>0,04</th></lq<>	0,04
	Sodium	1 mg/L	Pas de seuil	10300	10300	10100	10200	10000	10300	10300	10100	10100

		Limites de	Valeur de seuil			R	lésultats de	s analyses	de février 2	2023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Fluorures	0,05 mg/L	Pas de seuil	0,66	0,65	0,6	0,65	0,67	0,69	0,68	0,68	0,66
	Sulfates	1 mg/L	Pas de seuil	2920	2860	3000	2950	2980	2920	2910	2890	2900
	СОТ	0,5 mg/L	Classes d'état	1,1	1,3	1,1	1,5	1	1,1	1,1	0,98	2,7
	Azote global	0,1 µmol/l	Classes d'état	5,9	4,2	4,6	4,1	4,7	4,7	4,9	1,1	6,6
	Azote global	0,0014 mg/L		0,363	0,2605	0,2847	0,2572	0,2889	0,2888	0,3014	0,0654	0,410
	Nitrites	0,0023 mg/L	Classes d'état	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,005</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,005</td></lq<></td></lq<>	<lq< td=""><td>0,005</td></lq<>	0,005
	Millioo	0,05 µmol/l		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,11</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,11</td></lq<></td></lq<>	<lq< td=""><td>0,11</td></lq<>	0,11
	Nitrates	0,1 µmol/l		3,8	3,4	3,7	3,6	3,7	3,7	3,6	<lq< td=""><td>4,6</td></lq<>	4,6
Nutriments	Tilliates	0,0062 mg/L	Classes d'état	0,2343	0,2103	0,231	0,2247	0,2264	0,231	0,225	<lq< td=""><td>0,286</td></lq<>	0,286
	Ammonium _	0,1 µmol/l		1,5	0,33	0,41	0,51	0,56	0,49	0,75	0,91	1,2
		0,0018 mg/L	Classes d'état	0,0265	0,006	0,0074	0,0092	0,0102	0,0088	0,0135	0,0164	0,022
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,36	0,35	0,72	0,43	0,42	0,59	0,39	0,38	0,39
	Granopridopridade	0,0095 mg/L	Pas de seuil	0,0343	0,0332	0,0688	0,0412	0,0397	0,0564	0,0371	0,0362	0,038
	Silicium	0,2 mg/L	Pas de seuil	0,35	0,35	0,35	0,34	0,41	0,34	0,32	0,31	0,35
	Acénaphtène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Anthracène	0,005 μg/L	0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
HAP	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(a)pyrène	0,005 μg/L	0,027	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

		Limites de	Valeur de seuil			R	tésultats de	s analyses	de février 2	2023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Benzo(ghi)pérylène	0,001 μg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrysène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Dibenzo(a,h)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluoranthène	0,005 μg/L	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Naphtalène	0,05 μg/L	130	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	54	65	70	51	61	64	58	64	41
,	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th>4</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>4</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	4	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

3.2.12 Résultats pour la campagne de mars 2023

Le tableau ci-dessous présente les valeurs des paramètres mesurés en mars 2023.

Pour tous les paramètres présentant un seuil, aucun ne présente de valeur supérieure ou égale au seuil. De plus, les résultats sont similaires entre toutes les stations. Cependant, pour le benzo (ghi) pérylène, il n'est pas possible de conclure sur une contamination, car la limite de quantification est supérieure au seuil.

Tableau 22 : Résultats des analyses de la campagne de mars 2023.

		Limites de	Valeur de seuil			F	Résultats de	es analyses	de mars 2	023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (μg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Chlorophylle a	0,1 μg/L	Classes d'état	3,3	4	2,9	6,4	0,8	5,1	0,3	3,3	4,3
Biologie	Phéopigments	0,1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,1</th><th><lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<></th></lq<>	0,1	<lq< th=""><th><lq< th=""><th>0,1</th></lq<></th></lq<>	<lq< th=""><th>0,1</th></lq<>	0,1
	Aluminium	10 μg/L	Pas de seuil	<100	<100	<100	<lq< th=""><th><100</th><th><100</th><th><100</th><th><100</th><th><100</th></lq<>	<100	<100	<100	<100	<100
	Cadmium	0,2 μg/L	0,45	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrome	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Cuivre	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fer	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,18</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,18</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,18</th><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	0,18	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Métaux	Manganèse	1 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Nickel	1 μg/L	34	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Plomb	1 μg/L	14	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Zinc	10 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indium	3 μg/L	Pas de seuil	<lq< th=""><th>5,7</th><th><lq< th=""><th><lq< th=""><th>4,5</th><th>3,7</th><th>3,5</th><th>4,9</th><th>4,1</th></lq<></th></lq<></th></lq<>	5,7	<lq< th=""><th><lq< th=""><th>4,5</th><th>3,7</th><th>3,5</th><th>4,9</th><th>4,1</th></lq<></th></lq<>	<lq< th=""><th>4,5</th><th>3,7</th><th>3,5</th><th>4,9</th><th>4,1</th></lq<>	4,5	3,7	3,5	4,9	4,1
	Calcium	10 mg/L	Pas de seuil	406	394	399	399	406	406	399	407	393
Sels	Chlore	0,03 mg/L	Pas de seuil	0,04	0,04	0,05	0,06	0,04	0,06	0,04	0,05	0,08
3.0	Sodium	1 mg/L	Pas de seuil	10800	11200	10700	10600	10900	10800	10700	10600	10600

		Limites de	Valeur de seuil			F	Résultats de	es analyses	de mars 2	023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Fluorures	0,05 mg/L	Pas de seuil	0,69	0,69	0,68	0,67	0,68	0,67	0,69	0,67	0,67
	Sulfates	1 mg/L	Pas de seuil	2870	2880	2920	2960	2950	2920	2950	2930	2840
	СОТ	0,5 mg/L	Classes d'état	1,1	1,1	1,1	1,2	0,99	1,3	1	1,3	1,3
	Azote global	0,1 µmol/l	Classes d'état	5	1,9	2,3	2,7	4,7	0,46	3,1	1,7	6,8
	Azote global	0,0014 mg/L		0,31	0,1178	0,1445	0,1674	0,2883	0,0285	0,1891	0,1066	0,423
	Nitrites	0,0023 mg/L	Classes d'état	<lq< td=""><td>0,0059</td><td>0,0061</td><td>0,0038</td><td>0,0064</td><td>0,0037</td><td>0,0064</td><td>0,0085</td><td>0,009</td></lq<>	0,0059	0,0061	0,0038	0,0064	0,0037	0,0064	0,0085	0,009
	Nitities	0,05 µmol/l		<lq< td=""><td>0,13</td><td>0,13</td><td>0,08</td><td>0,14</td><td>0,08</td><td>0,14</td><td>0,19</td><td>0,18</td></lq<>	0,13	0,13	0,08	0,14	0,08	0,14	0,19	0,18
	Nitrates	0,1 µmol/l		2,8	0,67	0,94	1,4	2,5	0,61	2	0,81	5,1
Nutriments	Tvittates	0,0062 mg/L	Classes d'état	0,176	0,0418	0,0583	0,0838	0,152	0,0378	0,1262	0,0503	0,317
	Ammonium	0,1 µmol/l		1,7	0,95	1,1	1,1	0,64	0,71	0,61	0,57	0,91
		0,0018 mg/L	Classes d'état	0,0309	0,0171	0,0192	0,02	0,0115	0,0128	0,011	0,0103	0,016
	Orthophosphates	0,1 µmol/l	Pas de seuil	0,26	0,22	1,1	0,14	0,26	0,34	0,5	0,9	0,14
	Отторнозрнаез	0,0095 mg/L	Pas de seuil	0,0245	0,0206	0,1059	0,0135	0,0244	0,0325	0,047	0,0858	0,013
	Silicium	0,2 mg/L	Pas de seuil	0,54	0,42	0,54	0,52	0,6	0,57	0,52	0,53	0,48
	Acénaphtène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Acénaphthylène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Anthracène	0,005 μg/L	0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
HAP	Benzo(a)anthracène	0,005 μg/L	Pas de seuil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(a)pyrène	0,005 μg/L	0,027	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(b)fluoranthène	0,005 μg/L	0,017	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	Benzo(k)fluoranthène	0,005 μg/L	0,017	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

		Limites de	Valeur de seuil			F	Résultats de	es analyses	de mars 2	023		
Catégorie	Paramètre	quantification laboratoire année 2022 - 2023	NQE-CMA (µg/L)	EAU01	EAU02	EAU03	EAU04	EAU05	EAU07	EAU08	EAU09	EAU11
	Benzo(ghi)pérylène	0,001 μg/L	0,00082	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Chrysène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Dibenzo(a,h)anthracène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluoranthène	0,005 μg/L	0,12	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Fluorène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Indeno (1,2,3,c,d) pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Naphtalène	0,05 μg/L	130	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Phénanthrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Pyrène	0,005 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Autres micro- polluants	Composés organohalogénés adsorbables sur charbon actif (AOX)	10 μg/L	Pas de seuil	72	65	63	56	65	73	62	66	54
p =	HCT C10-C40	0,1 mg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	Bromoforme	0,5 μg/L	Pas de seuil	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>

3.3 SYNTHESE DES RESULTATS ET ELEMENTS DE DISCUSSION

3.3.1 Paramètres hydrologiques

L'évolution des paramètres hydrologiques (température, salinité, oxygène dissous et turbidité) est cohérente avec ce qui est décrit habituellement pour le nord du golfe de Gascogne (Les éoliennes flottantes de Groix & Belle-Île, RTE, 2020).

3.3.2 Évolution saisonnière des éléments nutritifs

Les concentrations côtières en nutriments : azote, ammonium, nitrates, nitrites et orthophosphates varient saisonnièrement, notamment avec l'activité liée à la production primaire et les paramètres hydrologiques tels que les courants ou les écoulements fluviaux.

La figure ci-dessous montre l'évolution saisonnière de la teneur de ces différents éléments nutritifs entre avril 2022 et mars 2023 (moyenne des 9 stations).

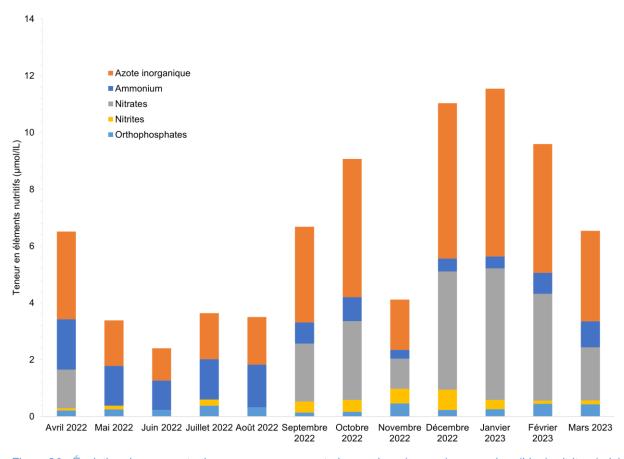


Figure 20 : Évolution des concentrations moyennes en azote inorganique (orange), ammonium (bleu), nitrites (gris), nitrates (jaune) et orthophosphates (bleu clair) entre avril 2022 et mars 2023.

Entre mai et août 2022, les concentrations en nitrates diminuent et présentent des minima, témoignant de l'effet conjugué d'une diminution des apports et d'une assimilation des nutriments par les producteurs primaires. En effet, au nord du Golfe de Gascogne, la fin de l'hiver et le printemps sont marqués par l'apparition de blooms phytoplanctoniques en raison de différents facteurs (e.g. température, photopériode,

disponibilité en nutriments etc.). La concentration en nitrates diminue également en novembre 2022 : cela peut être induit par un second pic annuel de production primaire, phénomène commun et généralement observé dans les zones côtières. Sur la Figure 17, la fluorescence semble en effet plus importante en novembre, comparée au mois d'octobre et de décembre. En dehors de ces périodes, cet élément nutritif reste bien présent en automne 2022 et hiver 2022-2023 : les masses d'eau s'homogénéisent, les apports côtiers augmentent et leur consommation par le phytoplancton diminue, car ces organismes deviennent limités par la lumière (Lomas et Lipschultz, 2006).

La concentration en ammonium et en nitrites apparait en comparaison plus faible et ces deux éléments nutritifs semblent corrélés négativement l'un à l'autre. À partir de septembre 2022, les nitrites augmentent alors que l'ammonium diminue. Cela peut s'expliquer par le fait que l'ammonium est transformé en nitrites par les bactéries puis en nitrates (Edokpa et al., 2015; Lannuzel, 2018). En février et mars 2023, les nitrites diminuent alors que l'ammonium augmente, nutriment apporté par les écoulements fluviaux.

Rapports N/P, Si/N, SI/P et production primaire :

La disponibilité en nutriments est essentielle pour la production primaire et donc le phytoplancton, à la base de la chaîne alimentaire marine. Il est admis que le taux de consommation des nutriments (azote, phosphore et silice principalement) par le phytoplancton augmente avec la concentration de ces nutriments jusqu'à un plateau qui est le taux maximum de croissance du phytoplancton.

L'étude du rapport entre l'azote, le phosphore et le silicium renseigne sur l'équilibre entre ces nutriments, et donc leur disponibilité pour les producteurs primaires. Ce rapport N/P/Si (rapport de Redfield théorique) serait de 16 : 1 : 20 dans l'eau de mer. L'équilibre de ce rapport détermine le type de producteurs primaires : si les nutriments suivent ce rapport, la production de Diatomées sera favorisée. Le phosphore deviendrait limitant pour la croissance du phytoplancton quand N/P est supérieur à 10. L'azote devient limitant quand N/P est inférieur à 5 (Talah, 2016; Thieu, 2009). Le tableau ci-dessous présente les rapports moyens N/Si/P.

Tableau 23 : Rapports moyens N/Si/P et écart-type associé d'avril 2022 à mars 2023 à partir des résultats d'azote inorganique dissous, de silicium et d'orthophosphates.

						2	022						
	Redfield	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Janvier	Février	Mars
N/P moyen	16	12.5	5.6	4.5	7.7	5.4	17	20.7	5.3	16.6	15.4	6.9	9.1
Ecart-type] "	7.1	2.3	2.7	5.5	4.6	7.6	17.2	3.8	4.9	4.2	3	9.8
Si/N moyen	4				6.3	8.5	3	2.4			2.1	1.6	4.8
Ecart-type	1 F	Pas de mesur	mesure	C: < 1 O	1.9	7.1	1	0.3	C: -	.10	0.5	1.2	5.8
Si/P	20		de	Si	SI V LQ	32.6 26.6 44.1 38	38.1	51 <	: LQ	31.2	8.6	20.2	
Ecart-type	20		22	12.9	9.9	14.8			7.4	1.9	11.9		

Les résultats montrent que le ratio N/P moyen est plus important en avril, septembre, octobre, décembre et janvier (compris entre 12,5 et 20,7) qu'en mai, juin, juillet, août, novembre, février et mars (4.5 et 7.7). Les écarts-types sont parfois importants, ce qui indique des différences entre les stations. Le rapport N/P est supérieur à 5 (sauf en juin où le ratio reste proche de 5 avec un écart-type de +/- 2,7), ce qui indique que l'azote n'a pas été limitant entre avril 2022 et mars 2023. En avril, septembre, octobre, décembre et janvier, les rapports N/P sont supérieurs à 10, mais restent aux alentours du rapport d'équilibre. En général, les résultats du ratio N/P montrent que c'est le phosphore qui est surtout limitant.

Les rapports Si/N ne sont calculables que de juillet à octobre 2022 et de janvier à mars 2023. Les rapports Si/N et Si/P sont supérieurs à ceux de Redfield, ce qui permet de dire qu'entre juillet et octobre 2022 et en janvier et février 2023, une quantité importante de silicium était disponible.

Cette disponibilité en azote et en silice favorise notamment le développement de diatomées. Les résultats de l'analyse des communautés phytoplanctoniques ont en effet montré que sur la première année de suivi (avril 2022 – mars 2023), la zone d'étude est dominée par des diatomées. Le rapport à 1 an relatif au

compartiment « Plancton » précise davantage la relation entre paramètres physico-chimiques et structure des communautés.

La concentration en chlorophylle-a est influencée par la température, mais aussi par le phosphore et parfois l'azote. En avril 2022, septembre et octobre 2022, décembre 2022 et janvier 2023, le rapport N/P est supérieur à 10, indiquant que le phosphore est limitant pour la croissance du phytoplancton. Entre octobre 2022 et janvier 2023, la concentration en chlorophylle *a* est effectivement plus faible avec des valeurs maximales de 50 à 75 ppb en octobre et novembre 2023, et de 25 ppb au maximum en décembre et janvier 2023. Entre mai et août 2023, les concentrations en chlorophylle *a* varient jusqu'à 155 ppb au maximum, associées à un rapport N/P de 4,5 à 7,7.

3.3.3 Autres paramètres mesurés et valeurs seuils

Il existe des seuils NQE-CMA pour uniquement quelques paramètres chimiques qui ont été mesurés (c.-à-d. cadmium, nickel, plomb, anthracène, benzo (a) pyrène, benzo (b) fluoranthène, benzo (k) fluoranthène, benzo (ghi) perylène, fluoranthène et naphtalène). Ces paramètres et leur seuil NQE-CMA sont indiqués dans les tableaux du Chapitre 2.5.1. Concernant les paramètres nutritifs et biologiques, des seuils DCE (Directive Cadre sur l'Eau) sont définis (chlorophylle a, COT, azote, nitrites, nitrates et ammonium).

Les résultats d'analyses des paramètres mesurés par Eurofins ne montrent aucun dépassement de seuil pour les métaux (pour lesquels un seuil existe). Les valeurs mesurées sont même globalement inférieures aux limites de quantification du laboratoire.

Le **benzo (ghi) perylène** est le seul hydrocarbure concerné par des dépassements de seuil (LQ = 0,00082 μg/L), à savoir en juin 2022 pour la station EAU03 (0,0044 μg /L) et en décembre 2022 pour la station EAU04 (0,0013 μg /L). La contamination par le benzo (ghi) perylène observée ici suggère une potentielle contamination de l'échantillon par le navire utilisé pour l'échantillonnage. En effet, cet hydrocarbure provient entre autres de la combustion d'éléments tels que l'essence et le diesel dans les moteurs. Il n'a pas été possible de conclure sur d'éventuels dépassements de seuils sur les autres stations pour le benzo (ghi) pyralène, car la limite de quantification est supérieure au seuil NQE-CMA.

Pour 11 Hydrocarbures Aromatiques Polycycliques mesurés sur les seize, des mesures quantitatives sont faites seulement à quelques stations en juin, en août et en décembre : cela concerne l'acénaphtène, le fluorène, le phénanthrène, le chrysène, le benzo(a)anthracène, le benzo(b)fluoranthène ainsi que le benzo(a)pyrène, le benzo(g,h,i)pérylène, le fluoranthène, le napthtalène qui sont règlementés par des seuils. Une seule concentration d'acénaphtène non inférieure à la LQ est enregistrée, à la station EAU04 en janvier 2023. L'analyse de l'indice Hydrocarbures (C10-C40), qui mesure la concentration en hydrocarbures regroupant notamment les hydrocarbures aromatiques et aliphatiques, donne seulement deux valeurs : en juillet à la station EAU11 et en février 2023 à la station EAU03.

Cinq des seize HAP mesurés présentent des valeurs inférieures à la limite de quantification : acénaphtylène, dibenz (a,c/a,h) anthracène, indéno (1,2,3-cd) pyrène, anthracène et benzo (k) fluoranthène. C'est également le cas pour l'analyse du bromoforme (tribromométhane).

Les analyses du **nickel** et du **plomb** montrent des résultats majoritairement inférieurs à la LQ. Seulement quelques valeurs ont pu être mesurées, mais elles restent largement en dessous du seuil NQE-CMA. Pour le nickel, une valeur de 4,3 µg/L a été mesurée à la station EAU03 en août 2022, 1 µg/L à la station EAU04 en novembre 2022, et des valeurs inférieures à 10 µg/L en janvier 2023 aux stations EAU01 et EAU05. Pour le plomb, seules des valeurs inférieures à 10 µg/L ont été mesurées aux stations EAU04 et EAU05 en janvier 2023.

L'aluminium présente également quelques valeurs, à l'exception du mois de février 2023 pour lequel une valeur supérieure à 10 μ g/L est enregistrée. Le **plomb** et le **chrome** présente seulement quelques valeurs sur toute la période de suivi début 2023 : ces valeurs sont inférieures à 10 μ g/L, ce qui ne permet pas de statuer sur un dépassement de seuil.

Les analyses de l'**indium**, du **cuivre** et du **manganèse** donnent quelques résultats épars en août, septembre, décembre 2022 ainsi qu'en janvier et février 2023. En mars 2023, à 6 stations sur 9 sont enregistrées des concentrations en indium supérieures à 3µg/L.

Concernant le **cadmium**, les résultats des prélèvements sont à chaque fois inférieurs à la limite de quantification de $0,2~\mu g/L$.

Les résultats pour les paramètres bactériologiques mesurés au travers d'Escherichia coli et des entérocoques intestinaux sont à chaque fois inférieurs à la limite de quantification de 15 NPP/100 ml.

4. RÉSULTATS POUR LES MESURES DES ECHANTILLONNEURS DGT ET DES CAGING DE MOULES

4.1 RESULTATS POUR LES ECHANTILLONNEURS DGT

Le traitement des résultats DGT a été fait selon la méthode proposée par Millan et al. (2022) (voir Chapitre 2.6). Les résultats sont présentés sous forme de tableaux et de graphiques.

Les concentrations en métaux C_e dans la solution d'éluat des DGTs pour les trois campagnes et déterminées par le laboratoire d'analyse sont indiquées dans les trois tableaux ci-dessous. Les concentrations pour tous les métaux sauf l'aluminium (Al) sont calculées à partir des DGTs Chelex 100, et pour l'aluminium, les concentrations sont calculées à partir des DGT résine Chelex/TiO2.

Tableau 24 : Concentration de métaux C_e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés (unités en (μg/L) pour la campagne du printemps 2024.

				Printe	mps 2024	
Paramètre	Limite de Quantification	Blanc	Blanc	Blanc	DGT	DGT
rarametre	visée	Laboratoire	Terrain PTM01	Terrain PTM02	immergé PMT01	immergé PMT02
		57,00	106,00	336,00	49,00	62,00
Aluminium		120,00	42,00	66,00	110,00	25,00
		87,00	423,00	65,00	125,00	524,00
		< 0,10	< 0,10	< 0,10	< 0,10	< 0,10
Cadmium		< 0,10	< 0,10	< 0,10	0,12	0,45
		< 0,10	< 0,10	< 0,10	< 0,10	0,25
		5,90	7,30	8,50	9,20	9,20
Chrome		7,90	6,90	9,20	9,00	9,40
		6,70	6,30	7,50	12,00	11,00
		12,00	3,10	3,50	3,00	5,00
Cuivre		17,00	3,50	3,60	4,40	3,90
		16,00	3,20	5,40	4,60	6,40
		10,00	5,60	8,20	4,10	30,00
Fer		69,00	22,00	10,00	6,60	10,00
	0,1 µg/L	16,00	20,00	16,00	9,30	9,90
	0,1 μg/L	1,20	< 0,50	0,63	9,40	11,00
Manganèse		1,10	2,20	1,30	11,00	9,80
		2,80	0,62	1,60	10,00	10,00
		2,60	< 1,00	5,00	8,50	14,00
Nickel		3,80	13,00	3,10	6,70	8,60
		1,10	1,70	6,20	6,20	12,00
		0,69	< 0,50	0,50	0,59	0,76
Plomb		0,67	0,80	0,76	0,74	0,65
		8,50	0,50	1,20	0,59	1,10
		< 0,50	< 0,50	< 0,50	3,90	4,60
Titane		< 0,50	0,62	0,53	4,10	3,90
		< 0,50	< 0,50	0,60	4,90	4,20
		33,00	33,00	40,00	32,00	40,00
Zinc		55,00	99,00	42,00	34,00	36,00
		33,00	33,00	367,00	26,00	47,00

Tableau 25 : Concentration de métaux C_e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés (unités en (μg/L) pour la campagne d'été 2024.

				Été 2	024	
Paramètre	Limite de Quantification	Blanc	Blanc	Blanc	DGT	DGT
	visée	Laboratoire	Terrain PTM01	Terrain PTM02	immergé PMT01	immergé PMT02
		32		39	23	26
Aluminium		63		48	10	5
		34		29	7,1	23
		< 0,10		< 0,10	0,18	0,17
Cadmium		< 0,10		< 0,10	0,21	0,19
		< 0,10		< 0,10	0,21	0,15
		5,70		5,00	7,40	9,70
Chrome		4,80		5,50	8,10	8,00
		17,00		6,10	8,50	9,90
		0,63		0,99	1,80	5,80
Cuivre		0,84		0,83	1,50	2,20
		1,00		0,94	1,50	1,50
		6,50		29,00	18,00	29,00
Fer		8,20		66,00	16,00	7,20
	0,1 μg/L	28,00	Pas de	7,40	15,00	8,60
	ο, τ μg/L	0,63	mesures	1,50	17,00	13,00
Manganèse		0,54		4,70	18,00	12,00
		1,10		0,92	18,00	12,00
		0,26		0,60	4,10	5,30
Nickel		0,38		0,31	4,50	5,60
		5,40		0,89	3,70	5,50
		0,21		0,24	0,56	1,10
Plomb		0,23		0,21	0,60	0,59
		0,26		0,29	0,70	0,59
		0,90		3,00	136,00	156,00
Titane		1,00		12,00	144,00	162,00
		0,95		3,20	162,00	179,00
		15,00		18,00	39,00	21,00
Zinc		14,00		20,00	52,00	17,00
		12,00		23,00	29,00	13,00

Tableau 26 : Concentration de métaux C_θ dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés (unités en (μg/L) pour la campagne d'automne 2024.

Été 2024			
Blanc Terrain PTM01	Blanc Terrain PTM02	DGT immergé PMT01	DGT immergé PMT02
	123,00	43,00	
		-	
		-	
		-	
		-	
< 5,00 17,00 66,00			_
_	-	·	_
			Pas de
mesures		•	mesures
		•	
		•	
	,	•	
	•	-	
		-	
		-	
	Terrain	Blanc Terrain PTM01 PTM02 123,00 86,00 69,00 < 0,10 < 0,10 0,64 29,00 0,89 1,90 3,00 1,80 17,00 95,00 Pas de	Blanc Terrain PTM01 PTM02 123,00

La première étape du traitement des données des triplicat consiste à éliminer les valeurs identifiées comme aberrantes. Par expérience, des valeurs anormales potentielles sont communément mesurées. Les résultats anormaux peuvent être dus à une erreur lors de la collecte des données ou simplement une indication de la variance des données. Il est important de traiter ces valeurs et le projet MONITOOL propose un organigramme pour identifier et écarter les valeurs identifiées comme aberrantes (Millan et al., 2022). Cela consiste à calculer le coefficient de variation à partir des valeurs de chaque triplicat de DGT puis à éliminer les valeurs extrêmes jusqu'à ce que ce coefficient soit inférieur ou égal à 30. Deux itérations ont pu être effectuées à partir des trois valeurs disponibles pour chaque triplicat de DGT et une seule valeur aberrante a été éliminée au besoin.

Les trois tableaux ci-dessous montrent les moyennes, l'écart-type, le coefficient de variation calculés à partir des triplicat de DGT issus de chaque campagne, pour chaque station et pour chaque paramètre. Le rapport entre les mesures des DGTs immergés et les blancs terrains sont aussi indiqués (RBL). Les concentrations en métaux C_e dans la solution d'éluat des DGTs inférieures aux LQ sont prises en compte en divisant par 2 les valeurs LQ (LQ visée ou bien LQ atteinte effectivement par le laboratoire).

Tableau 27 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentrations de métaux C_e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne du printemps 2024 (unités en (μg/L).

			Printemps 2024			
Paramètre	Statistique	Blanc Laboratoire	Blanc Terrain PTM01	Blanc Terrain PTM02	DGT immergé PMT01	DGT immergé PMT02
	Moyenne	88,00	190,33	155,67	94,67	203,36
Aluminium	ET	31,51	204,02	156,17	40,25	278,03
,	%ET	36	107	100	43	137
	RBL				0	1
	Moyenne	0,05	0,05	0,05	0,07	0,25
Cadmium	ET	0,00	0,00	0,00	0,04	0,20
	%ET	0	0	0	55	80
	RBL	0.00	0.00	0.40	1	5
	Moyenne	6,83	6,83	8,40	10,07	9,87
Chrome	ET	1,01	0,50	0,85	1,68	0,99
	%ET	15	7	10	17	10
	RBL	45.00	0.07	4.47	1 1 00	1
	Moyenne	15,00	3,27	4,17	4,00	5,10
Cuivre	ET	2,65	0,21	1,07	0,87	1,25
	%ET	18	6	26	22	25
	RBL	24.67	45.07	44.40	1	1
	Moyenne	31,67	15,87	11,40	6,67	16,63
Fer	ET	32,47	8,95	4,08	2,60	11,58
	%ET	103	56	36	37	70
	RBL	4.70	4.00	4.40	0	1
	Moyenne ET	1,70	1,02	1,18	10,13	10,27
Manganèse	%ET	0,95 56	1,04 101	0,50 42	0,81 8	0,64
	%E1 RBL	30	101	42	10	6 9
		2,50	5,07	4,77	7,13	11,53
	Moyenne ET	2,30 1,35	6,90	4,77 1,56	1,21	2,73
Nickel	%ET	54	136	33	17	2,73
	RBL	34	130	33	17	2
	Moyenne	3,29	0,52	0,82	0,64	0,84
	ET	4,51	0,28	0,35	0,09	0,23
Plomb	%ET	137	53	43	14	28
	RBL	101	00	10	1	1
	Moyenne	0,25	0,37	0,46	4,30	4,23
	ET	0,00	0,21	0,19	0,53	0,35
Titane	%ET	0	57	40	12	8
	RBL	j			11	9
	Moyenne	40,33	55,00	149,67	30,67	41,00
	ET	12,70	38,11	188,22	4,16	5,57
Zinc	%ET	31	69	126	14	14
	RBL				1	0

Tableau 28 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentrations de métaux C_e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne d'été 2024 (unités en (µg/L).

			Été 2024			
Paramètre	Statistique	Blanc Laboratoire	Blanc Terrain PTM01	Blanc Terrain PTM02	DGT immergé PMT01	DGT immergé PMT02
Aluminium	Moyenne ET %ET RBL	43,00 17,35 40		38,67 9,50 25	13,37 8,47 63	18,00 11,36 63 0
Cadmium	Moyenne ET %ET RBL	0,05 0,00 0		0,05 0,00 0	0,20 0,02 9	0,17 0,02 12 3
Chrome	Moyenne ET %ET RBL	9,17 6,80 74		5,53 0,55 10	8,00 0,56 7	9,20 1,04 11 2
Cuivre	Moyenne ET %ET RBL	0,82 0,19 23		0,92 0,08 9	1,60 0,17 11	3,17 2,31 73 3
Fer	Moyenne ET %ET RBL	14,23 11,95 84	Pas	34,13 29,64 87	16,33 1,53 9	14,93 12,20 82 0
Manganèse	Moyenne ET %ET RBL	0,76 0,30 40	de mesures	2,37 2,04 86	17,67 0,58 3	12,33 0,58 5 5
Nickel	Moyenne ET %ET RBL	2,01 2,93 146		0,60 0,29 48	4,10 0,40 10	5,47 0,15 3 9
Plomb	Moyenne ET %ET RBL	0,23 0,03 11		0,25 0,04 16	0,62 0,07 12	0,76 0,29 39 3
Titane	Moyenne ET %ET RBL	0,95 0,05 5		6,07 5,14 85	147,33 13,32 9	165,67 11,93 7
Zinc	Moyenne ET %ET RBL	13,67 1,53 11		20,33 2,52 12	40,00 11,53 29	17,00 4,00 23 1

Tableau 29 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentrations de métaux C_e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne d'automne 2024 (unités en (μg/L).

			Automne 2024			
Paramètre	Statistique	Blanc Laboratoire	Blanc Terrain PTM01	Blanc Terrain PTM02	DGT immergé PMT01	DGT immergé PMT02
Aluminium	Moyenne ET %ET RBL	70,00 23,39 33		92,67 27,61 30	49,67 6,51 13	
Cadmium	Moyenne ET %ET RBL	0,05 0,00 0,00		0,05 0,00 0,00	0,36 0,04 10,61	
Chrome	Moyenne ET %ET RBL	1,06 0,41 39		10,18 16,30 160	4,57 1,70 37	
Cuivre	Moyenne ET %ET RBL	1,80 0,46 25		2,23 0,67 30	4,53 0,55 12	
Fer	Moyenne ET %ET RBL	10,07 10,46 104	Pas	38,08 49,84 131	88,67 26,63 30	Pas
Manganèse	Moyenne ET %ET RBL	0,78 0,14 18	de mesures	1,28 0,89 69	13,67 2,08 15	de mesures
Nickel	Moyenne ET %ET RBL	3,90 1,40 36		4,73 4,59 97	14,00 1,73 12	
Plomb	Moyenne ET %ET RBL	0,35 0,17 48		0,46 0,36 78	2,33 0,25 11	
Titane	Moyenne ET %ET RBL	0,55 0,13 24		0,60 0,24 39	1,56 0,99 64	
Zinc	Moyenne ET %ET RBL	23,00 3,00 13		38,33 11,93 31	68,00 24,25 36	

Les valeurs indiquées en orange sur les trois tableaux précédents mettent en évidence les coefficients de variation strictement supérieurs à 30%. Cela signifie que des valeurs dites « anormales » sont présentes dans les triplicat concernés. La valeur estimée comme « anormale » a donc été retirée et les statistiques ont été de nouveau calculées pour chacun des paramètres. La valeur jugée comme anormale peut être soit trop haute, soit trop basse. Le choix est fait d'éliminer la valeur qui paraît la plus éloignée des deux autres.

Les trois tableaux ci-dessous présentent la valeur moyenne, l'écart-type et le coefficient de variation recalculés après avoir éliminé les valeurs « anormales ».

Tableau 30 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentrations de métaux C_e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne du printemps 2024 (unités en (μg/L). Les valeurs « anormales » ont été retirées.

			Printemps 2024			
Paramètre	Statistique	Blanc	Blanc	Blanc	DGT	DGT
	Statistique	Laboratoire	Terrain PTM01	Terrain PTM02	immergé PMT01	immergé PMT02
	Moyenne	72,00	74,00	65,50	117,50	43,50
Aluminium	ET	21,46	45,25	0,71	10,61	26,17
/ dariminarii	%ET	29	61	1	9	60
	RBL				2	1
	Moyenne	0,05	0,05	0,05	0,05	0,35
Cadmium	ET	0,00	0,00	0,00	0,00	0,14
	%ET	0	0	0	0	40
	RBL	2.22	2.22	0.40	1	7
	Moyenne	6,83	6,83	8,40	10,07	9,87
Chrome	ET	1,01	0,50	0,85	1,68	0,99
	%ET	15	7	10	17	10
	RBL	45.00	0.07	4.47	1 00	1 5 4 0
	Moyenne	15,00	3,27	4,17	4,00	5,10
Cuivre	ET	2,65	0,21	1,07	0,87	1,25
	%ET RBL	18	6	26	22 1	25 1
		12.00	24.00	0.10	7,95	9,95
	Moyenne ET	13,00	21,00	9,10		· · · · · · · · · · · · · · · · · · ·
Fer	%ET	4,24 33	1,41 7	1,27 14	1,91 24	0,07
	%E1 RBL	33	/	14	0	1
	Moyenne	1,15	0,44	1,45	10,13	10,27
	ET	0,07	0,44	0,21	0,81	0,64
Manganèse	%ET	6	60	15	8	6
	RBL			.0	23	7
	Moyenne	3,20	1,10	5,60	7,13	11,53
A	ET	0,85	0,85	0,85	1,21	2,73
Nickel	%ET	27	77	15	17	24
	RBL				6	2
	Moyenne	0,68	0,68	0,63	0,64	0,84
Dlomb	ET	0,01	0,21	0,18	0,09	0,23
Plomb	%ET	2	33	29	14	28
	RBL				1	1
	Moyenne	0,25	0,25	0,39	4,30	4,23
Titane	ET	0,00	0,00	0,20	0,53	0,35
ritarie	%ET	0	0	51	12	8
	RBL				17	11
	Moyenne	33,00	33,00	41,00	30,67	41,00
Zinc	ET	0,00	0,00	1,41	4,16	5,57
	%ET	0	0	3,45	14	14
	RBL				1	1

Tableau 31 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentrations de métaux C_e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne d'été 2024 (unités en (μg/L). Les valeurs « anormales » ont été retirées.

			Été 2024			
Paramètre	Ctatiatians	Blanc	Blanc	Blanc	DGT	DGT
Tarametre	Statistique	Laboratoire	Terrain PTM01	Terrain PTM02	immergé PMT01	immergé PMT02
	Moyenne	33,00		38,67	8,55	24,50
Aluminium	ET	1,41		9,50	2,05	2,12
7	%ET	4		25	24	9
	RBL	0.05		0.05	2.22	1
	Moyenne	0,05		0,05	0,20	0,17
Cadmium	ET	0,00		0,00	0,02	0,02
	%ET	0		0	9	12
	RBL Moyenne	5,25		5,53	8,00	3 9,20
	ET	0,64		0,55	0,56	1,04
Chrome	%ET	12		10	7	1,04
	RBL	12		10	,	2
	Moyenne	0,82		0,92	1,60	1,85
	ET	0,19		0,08	0,17	0,49
Cuivre	%ET	23		9	11	27
	RBL					2
	Moyenne	7,38		18,20	16,33	7,90
For	ET	1,20		15,27	1,53	0,99
Fer	%ET	16	Pas	84	9	13
	RBL		de			0
	Moyenne	0,59	mesures	1,21	17,67	12,33
Manganèse	ET	0,06	modaroo	0,41	0,58	0,58
Marigariooo	%ET	11		34	3	5
	RBL	2.22		0.40		10
	Moyenne	0,32		0,46	4,10	5,47
Nickel	ET	0,08		0,21	0,40	0,15
	%ET RBL	27		45	10	3 9
	Moyenne	0,23		0,25	0,62	0,59
	ET	0,03		0,23	0,02	0,00
Plomb	%ET	11		16	12	0,00
	RBL	1.		10	12	2
	Moyenne	0,95		3,10	147,33	165,67
Titons	ET	0,05		0,14	13,32	11,93
Titane	%ET	5		5	9	7
	RBL					53
	Moyenne	13,67		20,33	40,00	17,00
Zinc	ET	1,53		2,52	11,53	4,00
21110	%ET	11		12	29	23
	RBL					1

Tableau 32 : Valeur moyenne, écart-type (ET), coefficient de variation (%ET) et rapport blanc terrain (RBL) des concentrations de métaux C_e dans l'éluat pour les DGTs « blancs laboratoire », « blancs terrain » et les DGTs immergés pour la campagne d'automne 2024 (unités en (μg/L).

Les valeurs « anormales » ont été retirées.

			Automne 2024			
Paramètre	Statistique	Blanc	Blanc Terrain	Blanc Terrain	DGT immergé	DGT immergé
		Laboratoire	PTM01	PTM02	PMT01	PMT02
	Moyenne	83,50		92,67	49,67	
Aluminium	ET	0,71		27,61	6,51	
	%ET RBL	1		30	13	
	Moyenne	0,05		0,05	0,36	
Codmium	ĚΤ	0,00		0,00	0,04	
Cadmium	%ET	0,00		0,00	10,61	
	RBL	2.25				
	Moyenne ET	0,85		0,77	3,75	
Chrome	%ET	0,22 26		0,18 23	1,34 36	
	RBL	20		23	30	
	Moyenne	1,80		2,23	4,53	
Cuivre	ĒΤ	0,46		0,67	0,55	
Culvie	%ET	25		30	12	
	RBL	4.40		50.00	00.07	
	Moyenne ET	4,10		56,00	88,67	
Fer	%ET	2,26 55	55,15 98	26,63 30		
	RBL	33	Pas	30	30	Pas
	Moyenne	0,78	de mesures	0,77	13,67	de mesures
Manganèse	ET	0,14	mesures	0,01	2,08	mesures
Marigarioco	%ET	18		1	15	
	RBL Moyenne	3,10		2,10	14,00	
	ET	0,28		0,71	1,73	
Nickel	%ET	9		34	12	
	RBL					
	Moyenne	0,25		0,25	2,33	
Plomb	ET	0,00		0,00	0,25	
	%ET RBL	0		0	11	
	Moyenne	0,55		0,47	0,99	
	ET	0,13		0,05	0,02	
Titane	%ET	24		11	2	
	RBL					
	Moyenne	23,00		31,50	82,00	
Zinc	ET %ET	3,00		2,12 7	0,00	
	%ET RBL	13		/	0	
	RDL					

Les coefficients de variations indiqués en vert mettent en évidence que l'élimination des valeurs aberrantes a permis de les rendre inférieurs à 30%. Les paramètres pour lesquels le coefficient de variation est toujours supérieur à 30% sont indiqués en rouge. À ce stade, seules deux valeurs sur les triplicat des DGTs sont encore disponibles et il n'est pas forcément évident de déterminer laquelle des deux est aberrante.

Les données issues des DGTs sont à prendre avec précaution, notamment parce que l'on observe que les « blancs laboratoire » et les « blancs terrain » montrent des valeurs importantes, parfois même supérieures aux résultats des DGTs immergés. Il est admis que les résultats des blancs peuvent démontrer une grande variabilité des concentrations, mais cela est difficilement interprétable à ce jour au vu des connaissances actuelles sur les DGTs. De plus, malgré toutes les précautions prises, il se peut que les DGTs « blancs laboratoire » soient contaminés d'une manière ou d'une autre. Pour certains paramètres, les valeurs des DGTs immergés ne sont pas toujours largement dix fois inférieures aux valeurs des DGTs « blancs terrain » comme il est recommandé dans le projet MONITOOL (valeurs RBL).

L'étape suivante pour l'analyse des résultats des DGTs consiste à calculer la concentration de métal dans l'eau (C_{DGT} en ng/L). Les résultats pour les trois campagnes du printemps, de l'été et de l'automne 2024 sont présentés dans le tableau ci-dessous.

Tableau 33 : Concentration de métaux C_{DGT} dans l'eau (unités en (ng/L) pour les trois campagnes (printemps, été et automne 2024).

	Printem	ps 2024	Été	2024	Automne 2024
Paramètres	DGT immergé PMT01	DGT immergé PMT02	DGT immergé PMT01	DGT immergé PMT02	DGT immergé PMT01
Aluminium	4836,36	1759,00	228,14	652,14	1023,88
Cadmium	1,70	11,68	4,41	3,74	6,14
Chrome	413,39	397,73	212,79	244,11	77,16
Cuivre	132,98	166,71	34,48	39,77	75,52
Fer	269,48	331,44	358,75	173,12	1504,77
Manganèse	359,02	358,00	405,44	282,21	242,33
Nickel	256,20	406,42	95,42	127,00	251,73
Plomb	16,51	21,31	10,37	9,84	30,08
Titane	NA	NA	NA	NA	NA
Zinc	1046,46	1374,47	883,87	374,72	1401,03

Les concentrations les plus importantes concernent l'aluminium et le zinc (jusqu'à 4836,36 ng/L pour l'aluminium). Ces valeurs peuvent être comparées aux seuils NQE, mais ceux-ci doivent être convertis pour pouvoir être ramenés aux concentrations mesurées dans les DGTs. Ce travail fera l'objet d'une analyse future et l'interprétation de ces résultats sera également approfondie.

4.2 RESULTATS POUR LES MOULES

À la rédaction de ce rapport, seules trois campagnes de mise à l'eau ont pu être menées à bien (T0). À ce stade, il n'a pas été possible de récupérer des moules à T0 + 3 mois et à T0 + 6 mois. Il n'est donc pas possible de conclure sur la qualité de l'eau au travers de la matrice moule.

5. SYNTHÈSE ET PERSPECTIVES

Le suivi de la qualité de l'eau sur la période d'avril 2022 à mars 2023 a permis d'affiner les connaissances sur la zone du parc éolien de Bretagne Sud (AO5).

L'analyse des contaminants chimiques dans l'eau s'est faite de manière ponctuelle à l'aide de prélèvements sur différentes stations. Cependant, il a été difficile de déterminer les concentrations présentes dans l'eau du fait des limites de quantification des analyses. Les concentrations sont trop faibles pour pouvoir être quantifiées correctement via les prélèvements du fait des limites techniques de ces analyses en laboratoire. De plus, ces prélèvements ponctuels ne permettent pas de quantifier un état moyen de la qualité de l'eau sur la zone et ils donnent seulement une indication locale et temporelle au niveau de chacune des stations échantillonnées.

Les résultats des prélèvements pour lesquels des concentrations ont pu être mesurées (supérieure à la limite de quantification) montrent que celles-ci sont largement inférieures aux seuils NQE-CMA quand ils existent. Des dépassements de seuil sont atteints seulement pour l'hydrocarbure benzo (ghi) pyralène, mais cela est probablement dû à une contamination directe de l'échantillon par les gaz d'échappement du bateau lors du prélèvement, malgré toutes les précautions prises lors des interventions.

En complément, deux autres matrices ont été utilisées pour suivre la qualité de l'eau. Elles constituent des supports dits « intégrateurs » qui peuvent permettre d'obtenir une meilleure représentativité des concentrations des polluants dans l'eau. Des échantillonneurs DGT ont ainsi été utilisés pour étudier les concentrations en métal et des moules (mollusques filtreurs) pour étudier les concentrations des mêmes paramètres analysés dans les prélèvements d'eau (métaux, et HAP) et les PCB en plus.

Cependant, les résultats issus des DGTs et des moules n'ont pas pu apporter de conclusion à ce jour. Les protocoles de mesure et l'analyse des résultats doivent faire l'objet d'améliorations qui seront travaillées pour les futurs appels d'offres éoliens offshore. La mise en place de caging de moules a fait face à de nombreuses difficultés qui n'ont pas permis de récupérer des moules en bon état pour être analysées (destructions des systèmes de caging malgré plusieurs tentatives d'installation). L'analyse des résultats des DGTs est aussi complexe et l'interprétation s'avère difficile de par la forte sensibilité de ce système de mesure. De plus, la comparaison aux seuils NQE n'est pas immédiate et doit faire l'objet d'un travail de conversion pour pouvoir être adaptée aux mesures des échantillonneurs DGT. Cela fera l'objet d'une étude plus approfondie pour la suite et de formation en interne.

Les résultats du suivi des paramètres physico-chimiques mettent en évidence des évolutions saisonnières et des variations plutôt homogènes entre les stations. Les variations de ces paramètres dépendent de plusieurs facteurs et se recoupent également. L'utilisation d'une sonde différente en septembre 2022 est à noter. Les profils sont faits de manière ponctuelle dans le temps et dans l'espace et peuvent refléter des conditions physico-chimiques particulières en place au moment de la mesure. En particulier, on peut noter les faibles mesures de turbidité, mais celles-ci sont notamment le reflet de conditions météocéaniques calmes choisies pour le bon déroulement des campagnes. Les profils verticaux pourront faire l'objet d'analyses plus approfondies par la suite pour s'assurer de la qualité de la donnée et de la précision des valeurs mesurées (ex. l'étalonnage sur une gamme plus faible de turbidité (0 – 20 à 30 NTU) serait pertinent pour plus de précisions pour les mesures de turbidité faibles).

6. BIBLIOGRAPHIE

Amouroux Isabelle, Grouhel Anne, Briant Nicolas, Gonzalez Jean-Louis, Bizzozero Lucie, Allenou Jean-Pierre, Bruneau Audrey, Deborde Jonathan, Menet Florence, Munaron Dominique, Cuif Marion (2023). Implantation de parcs éoliens off-shore: caractérisation et suivi des contaminants chimiques. Recommandations Ifremer. Ref: RBE-CCEM-ARC-2023.05. Ifremer.

Edokpa, D.A., Evans, M.G., Rothwell, J.J., 2015. High fluvial export of dissolved organic nitrogen from a peatland catchment with elevated inorganic nitrogen deposition. Science of The Total Environment 532, 711-722. https://doi.org/10,1016/j.scitotenv.2015.06.072

Gonzalez, J.-L., Amouroux I. & Lesbats S., 2020. Tutoriels pour la mise en oeuvre opérationnelle des échantillonneurs passifs pour la mesure des contaminants métalliques et organiques en milieu marin. https://wwz.ifremer.fr/pollution/Echantillonneurs-passifs

INERIS, 2022. Fiche Benzo(g,h,i)pérylène - Ineris - 204119 - v1,005/01/2022.

INERIS, 2021a. Fiche Fluoranthène - Ineris - 204119 - v1,0, 20/12/2021,

INERIS, 2021b. Fiche Fluorène - Ineris - 200845 - 2255935 - v1,0 - 28/01/2021,

INERIS, 2019. Fiche Benzo(a)pyrène - Ineris - v3.2, 12/12/2019.

INERIS, 2016. Fiche Naphtalène - Ineris - Version N°4.1 - janvier 2016.

Lannuzel, R., 2018. Dynamique du carbone et des nutriments dans la zone côtière Baie de l'Aiguillon-Pertuis Breton et influence des apports terrestres du bassin versant du Marais poitevin. Ifremer.

Les éoliennes flottantes de Groix & Belle-Île, RTE, 2020, Etude d'impact - Chapitre 2 : Description des aspects pertinents de l'état actuel de l'environnement, dénommé « scénario de référence ».

Lomas, M.W., Lipschultz, F., 2006. Forming the primary nitrite maximum: Nitrifiers or phytoplankton? Limnol. Oceanogr. 51, 2453-2467. https://doi.org/10,4319/lo.2006.51,5.2453

Millán Gabet, V., Rodrigo Sanz, M., Amouroux, I., Belzunce, M. J., Bersuder, P., Bolam, T., ... & Zhang, H. (2022). Guide des bonnes pratiques pour l'utilisation des DGTs. Échantillonnage des métaux dans les eaux de transition et côtières par la technique du Gradient de Diffusion en couche mince (DGT). Projet MONITOOL.

Talah, A., 2016. Les différents rapports C/N/P dans le cas de la bioremédiation des sols.

Thieu, V., 2009. Modélisation spatialisée des flux de nutriments (N, P, Si) des bassins de la Seine, de la Somme et de l'Escaut: impact sur l'eutrophisation de la Manche et de la Mer du Nord. Sciences de la Terre. Université Pierre et Marie Curie - Paris VI.

7. ANNEXES

Annexe 1 : Valeurs de température et de salinité enregistrées par la bouée dérivante du SHOM avant, pendant et après la campagne de septembre 2022 (disponibles ici : https://dataselection.coriolis.eu.org/uri/c5286794)

