

DGEC - GGN&S 2DUHRS and UXO Survey

UXO Factual Report - Accepted

Project Document Code	6168_1-RR-02-A
-----------------------	----------------

2.0	10/07/2025	Accepted	LSM	EVA	BMCV
Revision	Date	Description of Revision	Author	Checked	Approved

SERVICES WARRANTY

1 The Report and its associated works and services have been prepared in accordance with an agreed contract n°1300193396 (the "Contract") between the Contractor and the Client as named at the front of this report. The Report is expressly intended to be used and match requirements and specifications as set forth in the Contract.

2 The Contractor has exercised due care and diligence in the preparation of the Report, applying the level of skill and expertise reasonably expected of a reputable Contractor experienced in the specific types of work conducted under the Contract.

3 Any findings, conclusions, and opinions presented in the Report are based on an interpretation of the available data. It is acknowledged that professionals may differ in their interpretations and opinions. Unless explicitly stated otherwise, the Report does not constitute a recommendation for any specific course of action.

4 In the event of any changes in the circumstances under which the Report was prepared and/or is to be used, including but not limited to alterations in site conditions, modifications to the client's final objectives, or changes to relevant legislation after the Report's production, some or all of the results contained herein may become invalid. The Contractor disclaims any liability arising from the usage of the Report under such changed circumstances.

5 The Contractor assumes no responsibility or liability to any other party in respect of or arising out of the Report and/or its contents. Any reliance placed upon the Report and/or its contents by any third party is done so entirely at their own risk.

6 By accepting the Report, the Client acknowledges and agrees to the terms and conditions outlined herein.

www.geoxyz.eu Page 2 of 60

REVISION HISTORY

The table on this page should be used to explain the reason for the report revision and what has changed since the previous revision. It is the holder's responsibility to check that they hold the latest validated version.

Rev.	Date	Reason for amendments	Section changes from previous version
1.0	12/06/2025	For Client review	NA
2.0	10/07/2025	Client's comments, Accepted	

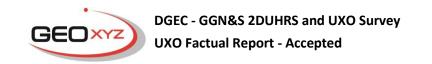
Author		Role and Function in the company
LSM	Luka Smajo	Reporter
EVA	Elke Vandekerkhove	Reporting & Interpretation coordinator
BMCV	Borja Martinez-Clavel Valles	Project Data Coordinator

www.geoxyz.eu Page 3 of 60

TABLE OF CONTENTS

1	П	NTRODUCTION		11
	1.1	Project overview	<i>/</i>	11
	1.1	1 Areas of stud	ıdy	11
	1.1		······································	
	1.2	Scope of work		
	1.3	•	ent	
2	G	EODETIC PARAME	TERS AND TRANSFORMATIONS	15
	2.1	Horizontal datum	n	15
	2.2	Vertical reference	re	15
	2.3	Time and log kee	eping	15
	2.4	Survey units		16
3	R	ESOURCES		17
	3.1	Vessels		17
	3.2	Equipment		17
	3.3	Software		17
4			1MARY	
5	D			
	5.1	Multibeam echos	sounder	19
	5.1	1 Data acquisi	ition and settings	19
	5.1	2 Overview of	f the methodology	19
	5.1		assessment	
	5.1	4 MBES delive	erables	22
	5.2	Side scan sonar		23
	5.2	2.1 Data acquisi	ition and settings	23
	5.2		f the methodology	
	5.2	2.3 Data quality	assessment	25
	5.2	2.4 SSS deliveral	ıbles	25
6	R	ESULTS		26
	6.1	Overview		26
	6.2	Bathymetry		26
	6.3	Seabed sediment	ts and morphology	26
	6.4	Contacts and deb	bris	27
7				
			O box charts	
Δ	PDENI	NIX R ALARD cortif	ificatos	60

LIST OF TABLES


Table 1-1: Original and updated ALARP box's locations	
Table 1-2: Project reports	14
Fable 2-1: Datum parameters	15
Table 2-2: Projection parameters	15
Table 3-1: Survey vessel specifications	17
Table 3-2: Survey equipment specifications	17
Table 3-3: Project software list	17
Table 4-1: Overview of survey operations	
Table 5-1: MBES acquisition parameters	19
Table 5-2: MBES specifications	19
Table 5-3: THU and TVU values	22
Table 5-4: Overview of the MBES deliverables	23
Fable 5-5: SSS acquisition parameters	
Table 5-6: Overview of the SSS deliverables	25
Table 6-1: Number and distribution of seabed features	26

LIST OF FIGURES

Figure 1-1: Project location overview - location of the four maritime facades	11
Figure 1-2: Scope of work area	12
Figure 5-1: MBES processing workflow	
Figure 5-2: DGEC GGN&S bathymetric data over survey box Box_GI23	21
Figure 5-3: Survey box BOX_GI23 MBES data hit count 1 m per square (green means >30 hits per bin)	
Figure 5-4: SSS processing workflow	24

www.geoxyz.eu Page 6 of 60

LIST OF APPENDICES

Appendix A: ALARP box charts (within this document)

Appendix B: ALARP certificates

www.geoxyz.eu Page 7 of 60

DEFINITIONS AND ABBREVIATIONS

Throughout this document the following terminology is used:

DGEC Direction Générale de l'Energie et du Climat (DGEC) (Client)

GEOxyz GEOxyz (Contractor)

The abbreviations and units listed in the table below are used within this report. Where abbreviations used in this document are not included in this table, it may be assumed that they are either equipment brand names or company names.

Acronym	Description	Acronym	Description
ASCII	American Standard Code for Information Interchange	MRU	Motion Reference Unit
cm	Centimetre	N	Northing
CRS	Coordinate Reference System	Р	Pitch
dB	Decibel	PAM	Passive Acoustic Monitoring
DGPS	Differential Global Positioning System	РВМА	Plus Basses Mers Astronomiques
DPR	Daily Progress Report	PPP	Precise Point Positioning
DTM	Digital Terrain Model	QC	Quality Control
E	Easting	QHSE	Quality Health Safety Environment
EPSG	European Petroleum Survey Group	QINSy	Quality Integrated Navigation System
ETRS89	European Terrestrial Reference System 1989	Rev	Revision
GIS	Geographic Information System	RPL	Route Position List
GGN&S	Golfe de Gascogne Nord et Sud	RTK	Real-time Kinematic
GNSS	Global Navigation Satellite System	SBP	Sub Bottom Profiler
GRS80	Geodetic Reference System 1980	SHOM	Service Hydrographique et Océanographique de la Marine
Н	Heading	SIMOPS	Simultaneous Operations
HF	High frequency (Acoustic)	SSS	Side Scan Sonar
HiPAP	High Precision Acoustic Positioning	SV	Sound Velocity
HIRA	Hazard Identification Risk Assessment	SVP	Sound Velocity Profile
HSE	Health Safety Environment	TBC	To Be Confirmed
Hsig	Significant wave height	THU	Total Horizontal Uncertainty
IMCA	International Marine Contractors Association	TVG	Transverse Gradiometer
JNCC	Joint Natural Conservation Committee	TVU	Total Vertical Uncertainty
KP	Kilometre Point	USBL	Ultra Short Base Line
LAT	Lowest Astronomical Tide	UTC	Universal Time Coordinated
LF	Low frequency (Acoustic)	UTM	Universal Transverse Mercator
MBES	Multibeam Echosounder	UXO	Unexploded Ordnance
MCR	Mobilisation and Calibration Report	VRF	Vessel reference frame
ММО	Marine Mammal Observer	ZDA	NMEA-0183 Date Time Message String
MOC	Management of Change	ZH	Zéro Hydrographique

www.geoxyz.eu Page 8 of 60

REFERENCE DOCUMENTATION

Client Documents

Key project documentation from the Client is listed below.

Ref.	Document Number	Title	Owner
1.	2023-DGEC-07 CCAP.pdf	Administrative clauses	DGEC
2.	2023-DGEC-07-RC.pdf	Tendering rules	DGEC
3.	2023-DGEC-07 AE annexe 2.docx	Commitment on deadlines	DGEC
4.	2023-DGEC-07 CCTP.pdf	Technical proposal	DGEC
5.	Scenarios_Rochebonne_V2	Offshore surveys (3 options)	DGEC
6.	DTS_BRGM	Desktop studies (geological)	BRGM
7.	DTS_SHOM	Desktop studies (bathymetry)	SHOM
8.	DTS_UXO	Desktop studies (UXO)	6 Alpha Associates Ltd

GEOxyz Project Documents

Key project documentation created by GEOxyz is listed below.

Ref.	Document Number	Title	Owner
9.	6168_1-PDR-01	Project Document Register	GEOxyz
10.	6168_1-HSE-01	HSE Plan	GEOxyz
11.	6168_1-DDL-01	Data Deliverables List	GEOxyz
12.	6168_1-ERB-01	Emergency Response & Bridging Document	GEOxyz
13.	6168_1-PEP-01	Project Execution Plan	GEOxyz
14.	6168_1-PQP-0	Project Quality Plan	GEOxyz
15.	6168_1-PRA-01	Project Risk Assessment	GEOxyz
16.	6168_1-CM-01	Communication Matrix	GEOxyz

Standard Operating Procedures

Standard GEOxyz operating procedures that are relative to the project are listed for reference.

Ref.	Document Number	Title	Owner
17.	GEO-OPP-6028	Positioning Systems Operation Procedure	GEOxyz
18.	GEO-OPP-6029	Heading Sensor Operation Procedure	GEOxyz
19.	GEO-OPP-6030	MRU Operation Procedure	GEOxyz
20.	GEO-OPP-6031	SVP Operation Procedure	GEOxyz
21.	GEO-OPP-6032	USBL Operation Procedure	GEOxyz
22.	GEO-OPP-6033	MBES Operation Procedure	GEOxyz
23.	GEO-OPP-6038	SSS Operation Procedure	GEOxyz
24.	GEO-OPP-3039	SBP Operation Procedure	GEOxyz

www.geoxyz.eu Page 9 of 60

Ref.	Document Number	Title	Owner
25.	GEO-OPP-6052	MBES Data Processing Procedure	GEOxyz
26.	GEO-OPP-6054	SSS Data Processing Procedure	GEOxyz
27.	GEO-OPP-6055	SBP Data Processing Procedure	GEOxyz
28.	GEO-OPP-6109	UHRS Operation	GEOxyz

Vessel Specific Procedures

Vessel Specific procedures that are relative to the project are listed for reference.

Ref.	Document Number	Title	Owner
29.	GEO-GO08-OPP-6011	L&R Procedure USBL Pole	GEOxyz
30.	GEO-GO08-OPP-6003	L&R Procedure - SSS	GEOxyz
31.	GEO-GO08-OPP-6001	L&R Procedure SVP	GEOxyz
32.	GEO-GO08-OPP-6004-	L&R Procedure - Dual TVG	GEOxyz
33.	GEO-G009-OPP-6001	L&R Procedure SVP	GEOxyz
34.	GEO-GO09-OPP-6018	L&R Procedure - 2DHR and UHR	GEOxyz

www.geoxyz.eu Page 10 of 60

1 INTRODUCTION

1.1 PROJECT OVERVIEW

As part of the development of offshore wind energy in France, the DGEC is responsible for the technical studies prior to the award of tenders for offshore wind farms. For each area identified as suitable for the development of wind farms, "de-risk studies" were carried out in order to analyse the seabed on the surface and sub-surface.

1.1.1 Areas of study

Four maritime façades have been identified to cover the areas where the development of offshore wind power is envisaged (Figure 1-1). The purpose of the contract is to carry out geophysical and UXO de-risking studies for approximately seven to eight sites spread throughout the metropolitan territory. This territory has been divided into four maritime façades:

- Eastern Channel North Sea (MEMN)
- North Atlantic Western Channel (NAMO)
- South Atlantic (SA)
- Mediterranean (MED)

These sites are located in the continental shelf area, generally between 12 and 50 nautical miles from the coast.

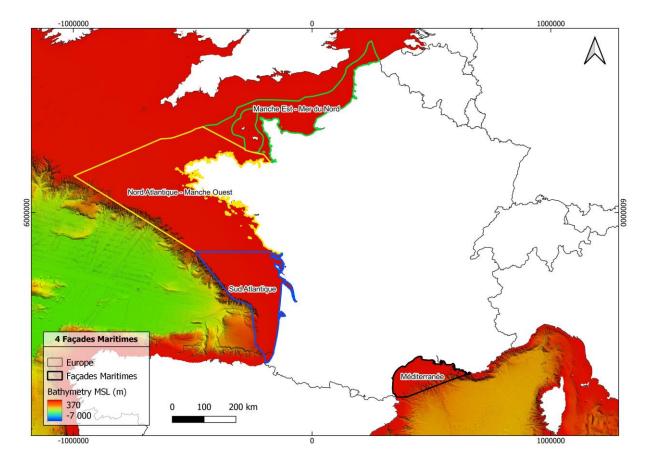


Figure 1-1: Project location overview - location of the four maritime facades

www.geoxyz.eu Page 11 of 60

1.1.2 Objectives

The main objectives of the de-risk studies were to:

- Provide UHR seismic, MBES bathymetry, and Sub Bottom Profiler data to better understand the seabed conditions
- Provide MBES/SSS data that will be used to issue ALARP certificates prior to the commencement of geotechnical testing

1.2 SCOPE OF WORK

The overall scope of work consists of geophysical survey components in the Golfe de Gascogne Nord et Sud (GGN&S) zone as shown Figure 1-2.

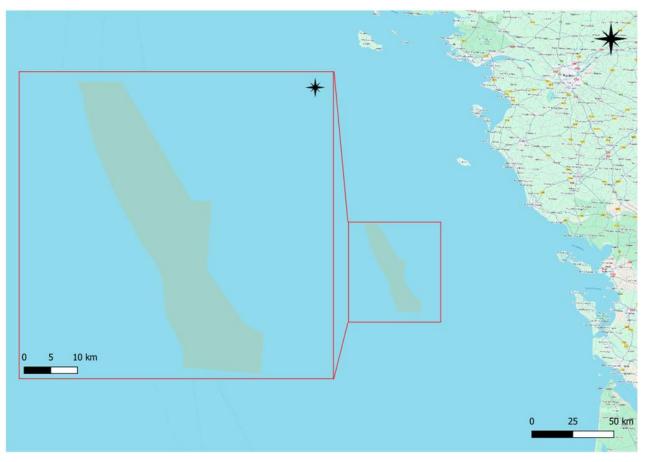


Figure 1-2: Scope of work area

The UXO survey comprised of the acquisition of multibeam bathymetry (MBES) and side scan sonar (SSS) sensor data from the GEOxyz vessel Geo Ocean VIII. As far as possible, data from all sensors was acquired simultaneously, with line planning as per the Client specifications.

As part of the UXO scope, ALARP certificates for the 30 m x 30 m boxes were to be issued via the UXO subcontractor GeoMines. The ALARP certificates contain as a minimum:

- A summary of the work carried out;
- A list of results with their classification, images and coordinates;
- Maps of the study area with all UXO-like observations and the avoidance radius
- Where necessary, the radius around the observations must be provided;

www.geoxyz.eu Page 12 of 60

The signature of the Licensee's UXO specialist.

The process of issuing ALARP certificates goes as follows: After geophysical data analysis, the white zones, with risks as low as reasonably (ALARP) possible are sought. This is done by geospatial processing in GIS software. First, the areas that could not be considered as white areas are mapped, grouping the pUXO targets (sonar and MBES contacts) and potential saturated areas. Afterwards, the "avoidance areas" are mapped with an avoidance zone of safety buffer radius away from all the potential UXO (pUXO) anomalies or any saturated or excluded areas. This avoidance area is also applied from the edge of the dataset inwards the centre of the survey area. The free space between these avoidance zones and the detection surface or survey boundary defines the outline of the ALARP certificate and the possible working area. Some boxes have been moved from the original location to issue the ALARP certificates. The original and the updated locations, as well as the distance between them are shown in Table 1-1.

Table 1-1: Original and updated ALARP box's locations

Name	Status	X centroid	Y centroid	Distance Original-Updated (m)
GGNS GI#01	Relocated	499971.38	5120077.81	45.89
GGNS GI#02	Original	497232.00	5123603.99	-
GGNS GI#03	Original	510224.42	5107105.51	-
GGNS GI#04	Original	514863.81	5101212.52	-
GGNS_GI#05	Original	518574.89	5096498.07	-
GGNS GI#06	Original	525996.45	5087068.26	-
GGNS GI#07	Original	511326.35	5098427.72	-
GGNS_GI#08	Original	503902.53	5107855.76	-
GGNS_GI#09	Original	514535.05	5089499.42	-
GGNS GI#10	Original	521030.06	5081249.25	-
GGNS_GI#11	Relocated	501967.86	5127337.11	31.11
GGNS GI#12	Original	510297.14	5116708.23	-
GGNS_GI#13	Relocated	517707.39	5107236.96	43.68
GGNS GI#14	Original	505835.64	5115104.77	-
GGNS GI#15	Original	501118.32	5111391.06	-
GGNS GI#16	Original	504830.56	5106677.3	-
GGNS GI#17	Original	507614.57	5103141.84	-
GGNS GI#18	Relocated	518558.17	5079493.72	32.31
GGNS_GI#19	Relocated	517189.88	5093503.12	60.21
GGNS GI#20	Original	529957.43	5084459.49	-
GGNS GI#21	Original	520604.61	5086641.49	-
GGNS GI#22	Relocated	525223.06	5080706.95	45.62
GGNS GI#23	Original	526673.2	5083782.86	-
GGNS_GI#24	Relocated	512948.04	5093978.08	23.43
GGNS GI#25	Original	518497.49	5086891.69	-
GGNS GI#26	Original	523213.48	5090604.54	-
GGNS_GI#27	Original	521358.1	5092961.99	-
GGNS_GI#28	Relocated	518019.52	5082722.48	49.94

www.geoxyz.eu Page 13 of 60

Name	Status	X centroid	Y centroid	Distance Original-Updated (m)
GGNS_GI#29	Original	514361.43	5096999.01	-
GGNS_GI#30	Original	518825.67	5098604.61	-

1.3 SCOPE OF DOCUMENT

Table 1-2 lists all the reports delivered as part of this survey, with this report highlighted in **bold**.

Table 1-2: Project reports

Document Number	Title	
6168_1-OR-01	Operations Report - GOVIII	
6168_1-MCR-01	Mobilisation & Calibration Report - GOVIII	
6168_1-RR-01	UHRS Factual Report	
6168_1-RR-02	UXO Factual Report (This Report)	

www.geoxyz.eu Page 14 of 60

2 GEODETIC PARAMETERS AND TRANSFORMATIONS

2.1 HORIZONTAL DATUM

The geodetic datum and mapping coordinate system used for this project is WGS84 UTM Zone 30N. All coordinates used are referenced to the geodetic datum and grid parameters listed in Table 2-1 and Table 2-2 below.

Table 2-1: Datum parameters

Parameter	Details
Geodetic Datum	World Geodetic System 1984 (WGS84)
EPSG Coordinate Reference System	4258
Spheroid	GRS80
EPSG Ellipsoid Code	7019
Semi-Major Axis	6378137.000
Semi-Minor Axis	6356752.31424
Flattening	1/298.257223563
Eccentricity Squared	0.00669428002290

Table 2-2: Projection parameters

Parameter	Details
EPSG Coordinate Reference Code	32630
Projection	UTM
Zone	30N
Central Meridian	3° West
Latitude of Origin	0°
False Easting	500000.00 m
False Northing	0.00 m
Scale Factor at Central Meridian	0.9996
Units	Metres

2.2 VERTICAL REFERENCE

The vertical reference used is the Zéro Hydrographique (ZH) defined by the surface Lowest Astronomical Tide (LAT). Reduction was made via the SHOM Bathyelli (PBMA Plus Basses Mers Astronomiques in French) v2.1 model.

2.3 TIME AND LOG KEEPING

UTC (Universal Time Coordinated) has been used for record keeping during the project (including the Daily Progress Reports unless stated otherwise). The vessel also maintained local time for operations.

Data time-tagging and synchronization used UTC. All data recorded in the online navigation software was time stamped where appropriate using the time string and the pulse-per-second (PPS) from the GNSS.

www.geoxyz.eu Page 15 of 60

2.4 SURVEY UNITS

The following survey units were used during the project and throughout this report;

- Linear units are expressed in metres (m)
- Angular units are expressed in degrees (°)

www.geoxyz.eu Page 16 of 60

3 RESOURCES

3.1 VESSELS

The specifications of the GOVIII are summarised in Table 3-1.

Geo Ocean VIII **Specifications** 51.3 m Length 12.0 m Width 5.2 m Draught 13 knots Maximum speed 2 x ABC Diesel 6MDZC 1800 bhp Main propulsion 24h day operations (28 days) Endurance Accommodation Station Keeping/Autopilot **Positioning** 5 tonnes A-Frame 6 tonnes @ 12 m Crane

Table 3-1: Survey vessel specifications

3.2 EQUIPMENT

The equipment used for the geophysical survey is summarised in Table 3-2.

Equipment Manufacturer Model Trimble BD982/BX992 **GPS** Septentrio AsteRX-U3 Marine receiver with 2x Zephyr III 2xSBG Apogee-I-B Surface IMU, NAVSIGHET-E-RA INS **IXBlue** Hydrins G4 (motion, heading) Sound Velocity Profiler Valeport 2 x Swift **USBL** Kongsberg HiPAP, hsc 1-i5 HA Kongsberg EM2040 Multibeam 4205 Side Scan Sonar Edgetech Winches DEW-STX-1500 Survey Winch Degra Emce

Table 3-2: Survey equipment specifications

3.3 SOFTWARE

The software that was used for data acquisition and processing is outlined in Table 3-3 below.

Table 3-3: Project software list

Equipment / Data Type	Acquisition	Processing
Navigation, MBES, GNSS	QPS QINSy	n/a
MBES	QPS QINSy	Qimera / FMGT QPS BeamworX AutoClean
Side Scan Sonar	Discovery	SonarWiz V7.10.02 , QGIS

www.geoxyz.eu Page 17 of 60

4 OPERATIONAL SUMMARY

The survey vessel Geo Ocean VIII (GOVIII) was utilised to complete the MBES/SSS acquisition during the UXO survey. A summary of the survey operations is outlined in Table 4-1.

Table 4-1: Overview of survey operations

Vessel	Dates	Activity
Geo Ocean VIII	04/05/2025 – 08/05/2025	MBES/SSS UXO survey, transit etc.

www.geoxyz.eu Page 18 of 60

5 DATA PROCESSING

5.1 MULTIBEAM ECHOSOUNDER

5.1.1 Data acquisition and settings

The primary settings used for the project are outlined in Table 5-1.

Table 5-1: MBES acquisition parameters

Item	Setting
Survey speed	~4 knots
Steered node	No
Beam Spacing	Equi-distant
Soundings-per-ping	1024 per head
System Frequency	400 kHz
Coverage	Full coverage bathymetry with 30 % data overlap for UXO geophysical survey. For UHRS survey the best data quality will be acquired
Back Scatter Data Required	RAW data recorded only
Water Column Data to be Recorded	No
Line Spacing	See line plan

The MBES project specifications are listed in Table 5-2.

Table 5-2: MBES specifications

·			
Item	Specification		
	30 HC/m² until 50m water depth		
Minimum data density	15 HC/m² between 50-150 m water depth		
	9 HC/m² between 150-200 m water depth		
	0.2 m for <25 m water depth		
Bin size	0.5 m for 25-50 m water depth		
	1 m for 50-200 m water depth		
Grid	0.5 m cell size		
Gridded standard deviation	≤0.20 m per 1 m² bin		
Coverage	100 % with 30 % overlap between adjacent survey lines		
TVU	0.8 m (for 100 m water depth) / 1.5 m (for 200 m water depth)		
THU	2 m		
Backscatter	Recorded not processed		

5.1.2 Overview of the methodology

Bathymetric data was recorded in QINSy as raw QPD files. The data was initially checked offline into the QPS processing software Qimera for quality, coverage, and density requirements. Data processing was carried out using Qimera and AutoClean. First, a rough cleaning was applied in Qimera to remove major spikes and noise. In addition, any SVP/refraction and GNSS drop out issues were fixed. Afterwards, FAU files were exported to

www.geoxyz.eu Page 19 of 60

continue processing with AutoClean. Bathymetric data was cleaned on a line-by-line basis and/or by using area-based cleaning tools in the processing software. A combination of basic filters applied to the entire data set and then individual QPDs manually cleaned by deleting any further outliers visible within the data.

Figure 5-1 outlines the general MBES processing workflow.

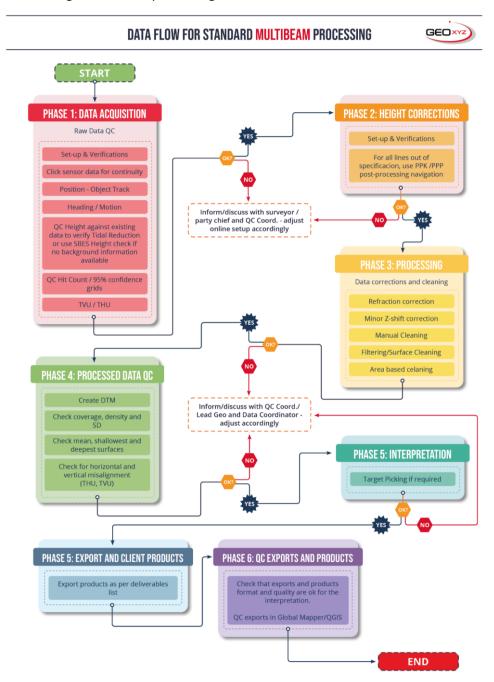


Figure 5-1: MBES processing workflow

5.1.3 Data quality assessment

For MBES data 143 lines have been acquired with run-in/run out length of 150 metres. Data was of high quality and within project requirements. Full coverage was achieved (Figure 5-2). An example of the number of hits per metre over one the survey boxes is illustrated in Figure 5-3.

www.geoxyz.eu Page 20 of 60

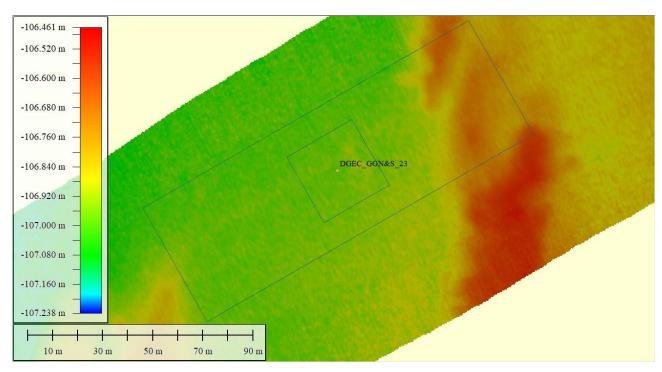


Figure 5-2: DGEC GGN&S bathymetric data over survey box Box_GI23

Figure 5-3: Survey box BOX_GI23 MBES data hit count 1 m per square (green means >30 hits per bin)

The THU (Total Horizontal Uncertainty) and TVU (Total Vertical Uncertainty) values calculated for each box are presented in Table 5-3. These values have been calculated according to the IHO S44 Special Order threshold. TVU has been calculated according to this formula:

$$TVU_{max}(d) = \sqrt{a^2 + (b \times d)^2}$$

www.geoxyz.eu Page 21 of 60

Where **a**, represents that portion of the uncertainty that does not vary with the depth (0.25 m for Special Order); **b**, is a coefficient which represents that portion of the uncertainty that varies with the depth (0.0075 for Special Order) and **d**, is the depth. THU is, according to the IHO Special order, a fix value of 2 metres.

Table 5-3: THU and TVU values

Table 5-5. The and TVO values					
GGNS UXO	Depth Mean	IHO TVU calculated	IHO THU calculated	TVU in block	THU in block
Box GI01	115.61	1.00	2	0.22-0.28	1.23-1.67
Box GI02	115.57	1.00	2	0.22-0.28	1.23-1.67
Box GI03	112.425	0.98	2	0.1-0.35	1.19-2
Box GI04	113.565	0.99	2	0.1-0.19	1.23-1.62
Box GI05	110.89	0.97	2	0.22-0.28	1.2-1.6
Box GI06	104.09	0.93	2	0.22-0.27	1.12-1.48
Box GI07	114.395	0.99	2	0.1-0.28	1.22-1.65
Box GI08	115.855	1.00	2	0.1-0.19	1.21-1.65
Box GI09	111.49	0.97	2	0.22-0.28	1.21-1.78
Box GI10	109.27	0.96	2	0.1-0.19	1.18-1.74
Box GI11	114.575	0.99	2	0.1-0.19	1.24-1.61
Box GI12	107.5	0.95	2	0.22-0.27	1.55-1.18
Box GI13	108.19	0.95	2	0.1-0.18	1.17-1.55
Box GI14	109.075	0.96	2	0.22-0.28	1.18-1.59
Box GI15	111.92	0.98	2	0.1-0.19	1.18-1.59
Box GI16	115.875	1.00	2	0.1-0.19	1.24-1.63
Box GI17	112.575	0.98	2	0.1-0.19	1.18-1.62
Box GI18	114.36	0.99	2	0.1-0.2	1.2-1.87
Box GI19	112.215	0.98	2	0.22-0.28	1.21-1.64
Box GI20	103.66	0.92	2	0.22-0.28	1.1-1.69
Box GI21	109.465	0.96	2	0.1-0.18	1.16-1.55
Box GI22	106.81	0.94	2	0.1-0.27	1.14-1.62
Box GI23	106.085	0.94	2	0.22-0.27	1.14-1.69
Box GI24	116.77	1.01	2	0.22-0.29	1.26-1.94
Box GI25	112.775	0.98	2	0.1-0.19	1.17-1.79
Box GI26	106.405	0.94	2	0.1-0.18	1.13-1.5
Box GI27	110.435	0.97	2	0.1-0.22	1.17-1.68
Box GI28	114.805	1.00	2	0.1-0.23	1.23-1.79
Box GI29	113.155	0.99	2	0.22-0.3	1.21-1.71
Box GI30	111.11	0.97	2	0.22-0.28	1.2-1.61

5.1.4 MBES deliverables

The MBES deliverables created as a result of the project are outlined in Table 5-4.

www.geoxyz.eu Page 22 of 60

Table 5-4: Overview of the MBES deliverables

Deliverable	Format
RAW bathymetric data	QPD or bwxraw
Despiked, motion and tidal corrected point cloud	ASCII
Bathymetric average values gridded surface	ASCII, RGB TIF, Encoded TIF
Bathymetric density (Hit Count) values gridded surface	ASCII, RGB TIF, Encoded TIF
Bathymetric slope values gridded surface	RGB TIF, ENCODED TIF OR FLT
Bathymetric Contour Lines	SHP
MB Targetlist	ASCII, SHP

5.2 SIDE SCAN SONAR

5.2.1 Data acquisition and settings

For side scan sonar data acquisition, the acquisition parameters are listed in Table 5-5.

Table 5-5: SSS acquisition parameters

Item	Setting	
Survey speed:	~4 knots	
Steered node:	Yes	
Frequency:	Dual frequency with the high frequency of at least 600 kHz	
Range:	50 m range for both LF and HF	
Mode:	HDM	
Flying Altitude:	5-10 % of range	
Time Stamp:	ZDA from Qinsy	
Navigation:	USBL position / fixed layback	
Heading:	Internal compass / bearing to tow point / determined from positioning verification	
Nadir Filler:	No	
Data Format:	JSF / XTF	
Line Spacing:	See line plan: SSS only required for UXO geophysical survey	

5.2.2 Overview of the methodology

Side scan sonar data (.JSF files) was recorded using Edgetech Discover. An acquisition log was kept of all settings and other observations. Quality Control (QC) was performed offline where the dataset is checked for overall quality, coverage, artefacts, and positioning.

The HF and LF SSS data were processed using the Chesapeake SonarWiz software following the workflow outlined in Figure 5-4.

www.geoxyz.eu Page 23 of 60

DATA FLOW FOR STANDARD SSS PROCESSING

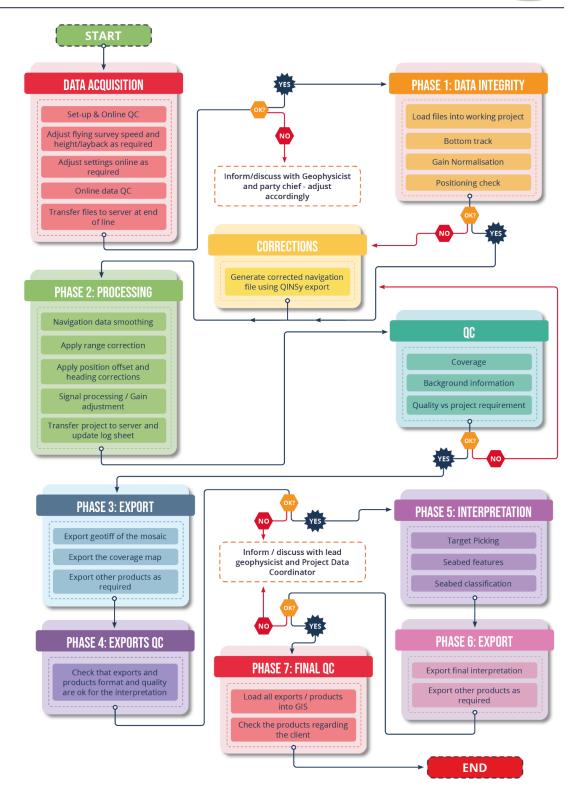


Figure 5-4: SSS processing workflow

www.geoxyz.eu Page 24 of 60

Navigation data from the QINSy logfile was injected into the sonar files using Nav Injector Pro, the heading used was a calculated bearing-to-towpoint from QINSy and the X and Y co-ordinates were Kalman filtered to provide the most accurate positioning of the SSS fish. The SSS data were then loaded into SonarWiz, the seabed was bottom-tracked, minor heading corrections were applied to the navigation where needed and any spikes smoothed out using Zedit. The Empirical Gain Normalisation (EGN) was applied to normalise the signal return along the record, in order to clarify changes in the acoustic reflectivity of the seabed and the presence of any morphological features. A de-stripe filter was applied, whenever necessary, to create a well-balanced sonar image.

5.2.3 Data quality assessment

For SSS data 94 lines have been acquired with run-in/run out length of 150 metres. The side scan sonar data was of high quality with little weather effects. On average, the real-time position of the side scan sonar data was good, with deviations of less than 2 m, when verified with the collected MBES data on a line-by-line basis. Sonar coverage always met project specifications.

GI22 and GI28 geotechnical boxes were moved onboard from the original location. See Figure 5 and Figure 6 for the side scan mosaic displaying contacts in the 30 m x 30 m box. This was raised to the onboard Client representative who was in agreement of the relocation.

5.2.4 SSS deliverables

The SSS deliverables created as a result of the project are outlined in Table 5-6.

Table 5-6: Overview of the SSS deliverables

Deliverable	Format	
Raw SSS data	JSF, HF XTF	
Processed SSS data	HF XTF	
SSS Individual mosaic per line	RGB TIF	
SSS mosaic	RGB TIF	
SSS Targetlist	ASCII, Excel	
Seabed Features, Lines, Polygons	SHP	
Seabed Sediments Primary	SHP	

www.geoxyz.eu Page 25 of 60

6 RESULTS

6.1 OVERVIEW

The results of the survey per ALARP geotechnical box have been presented in APPENDIX A. Each of the charts in the appendix contains a bathymetric overview with targets, seabed sediment classification, HF side scan mosaic with features and targets and the location of the shown ALARP geotechnical box.

There were no MBES and SSS targets detected inside each 30 x 30 m survey box.

ALARP certificates were issued for this survey and can be found attached to this report (APPENDIX B).

6.2 BATHYMETRY

The bathymetric data was acquired in a 50-centimetre resolution and has been shown in the top-left chartlet of the charts found in APPENDIX A.

Within each of the survey boxes, the bathymetry ranges vary within a few metres.

The deepest point of the surveyed boxes is located in the DGEC_GGN&S#24, lying at a depth of -118.11 m LAT. The shallowest point is located in the DGEC_GGN&S#20, lying at a depth of -103.43 m LAT.

6.3 SEABED SEDIMENTS AND MORPHOLOGY

In terms of sedimentation, gravel and sandy sediments were present. Gravel sediments were observed on one surveyed box, while the remaining 29 of them display sandy (sand and silty sand) sediments. Top-right chartlet in APPENDIX A shows the sedimentation classification of each surveyed box.

In total, 29 seabed features were noted: seven trawl marks, 16 ripples and six hummocky seafloors. Their number and distribution are shown in Table 6-1, while their exact location is shown in on the lower-left chartlet in APPENDIX A.

Table 6-1: Number and distribution of seabed features

CCNR C LIVO have	Number of linear seabed features	Number of polygonal seabed features	
GGN&S UXO box	Trawl scars	Ripples	Hummocky seafloor
DGEC_GGN&S#01	1	0	0
DGEC_GGN&S#02	0	0	0
DGEC_GGN&S#03	0	0	0
DGEC_GGN&S#04	0	0	0
DGEC_GGN&S#05	0	0	0
DGEC_GGN&S#06	0	0	1
DGEC_GGN&S#07	0	0	0
DGEC_GGN&S#08	0	0	1
DGEC_GGN&S#09	0	1	1
DGEC_GGN&S#10	1	0	0
DGEC_GGN&S#11	0	0	0
DGEC_GGN&S#12	2	2	0
DGEC_GGN&S#13	0	0	0

www.geoxyz.eu Page 26 of 60

	Number of linear seabed features	Number of polygonal seabed features	
GGN&S UXO box	Trawl scars	Ripples	Hummocky seafloor
DGEC_GGN&S#14	0	1	0
DGEC_GGN&S#15	0	1	1
DGEC_GGN&S#16	0	0	0
DGEC_GGN&S#17	0	0	1
DGEC_GGN&S#18	0	0	0
DGEC_GGN&S#19	0	0	0
DGEC_GGN&S#20	0	1	0
DGEC_GGN&S#21	0	1	0
DGEC_GGN&S#22	0	0	0
DGEC_GGN&S#23	0	1	0
DGEC_GGN&S#24	0	0	1
DGEC_GGN&S#25	0	1	0
DGEC_GGN&S#26	0	1	0
DGEC_GGN&S#27	0	0	0
DGEC_GGN&S#28	0	0	0
DGEC_GGN&S#29	1	0	0
DGEC_GGN&S#30	2	0	0

6.4 CONTACTS AND DEBRIS

There were no targets detected on either MBES or SSS datasets inside each 30 x 30 m survey box.

www.geoxyz.eu Page 27 of 60

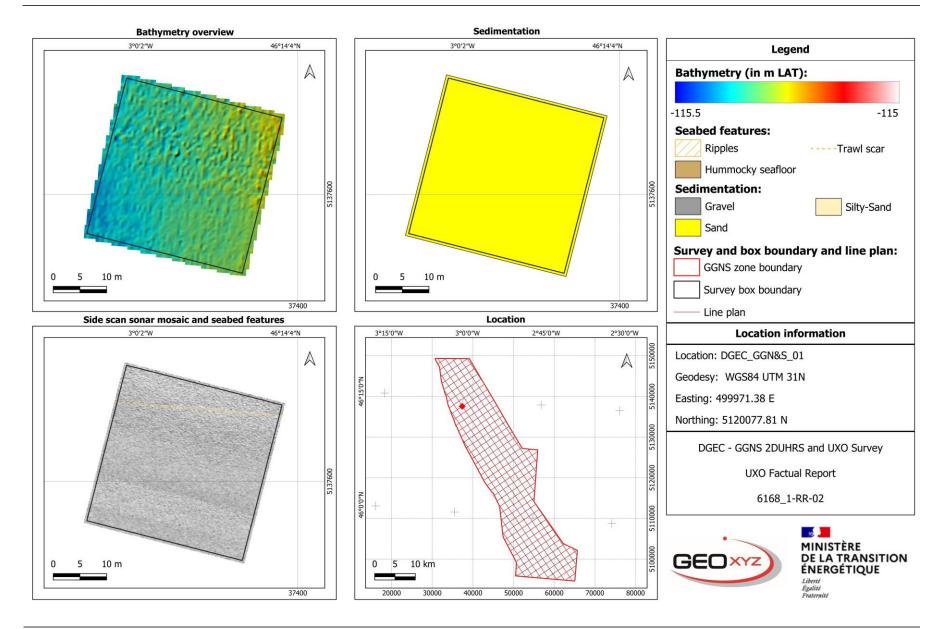
7 CONCLUSION

A UXO survey was conducted for twenty-four 30 x 30-metre survey boxes within the GGN&S area. The survey comprised the acquisition of multibeam bathymetry (MBES) and side scan sonar (SSS) data. The survey vessel Geo Ocean VIII (GOVIII) was utilized for the acquisition. The survey was conducted between 03/05/2025 and 08/05/2024. ALARP certificates were issued on 16/05/2025.

The bathymetry within each of the survey boxes vary within a few metres. The deepest point of the surveyed boxes is located in the DGEC_GGN&S#24, lying at a depth of -118.11 m LAT. The shallowest point is located in the DGEC_GGN&S#20, lying at a depth of -103.43 m LAT.

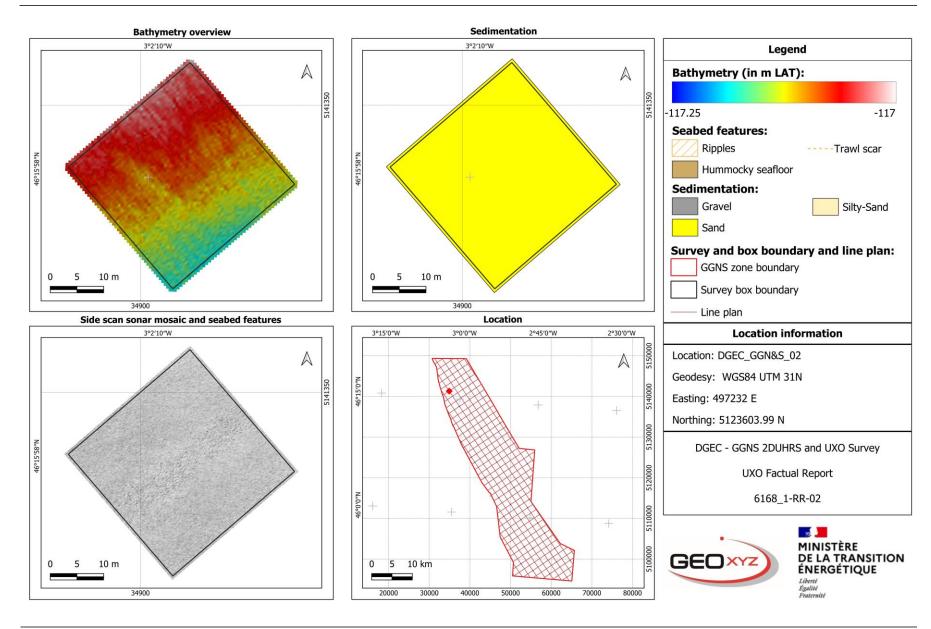
Gravel and sandy sediments were the only type of sedimentation present. Gravel sediments were observed on one surveyed boxes, while the remaining 29 of them have sandy sediments.

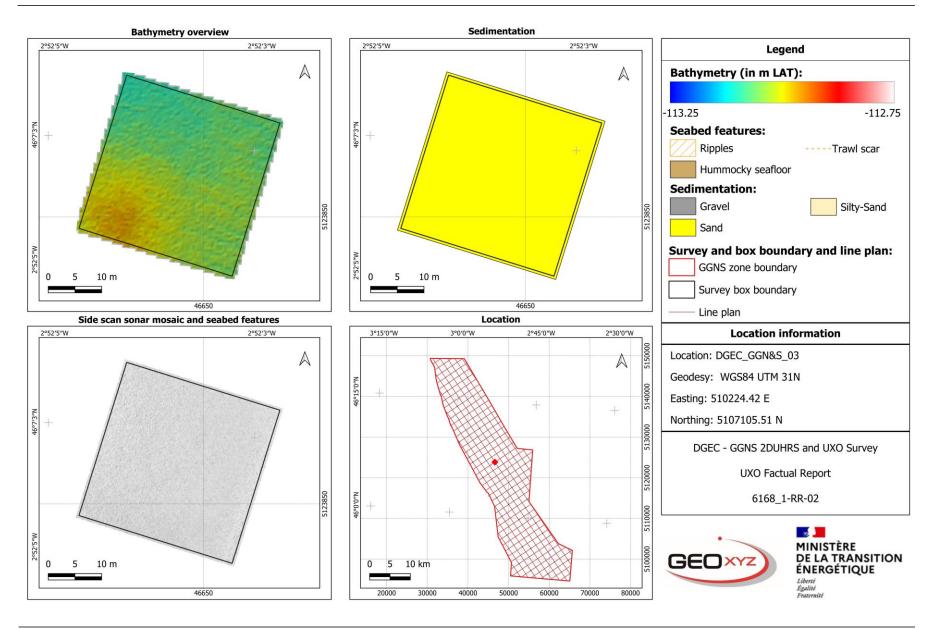
In total, 29 seabed features were noted: seven trawl marks, 16 ripples and six hummocky seafloors.

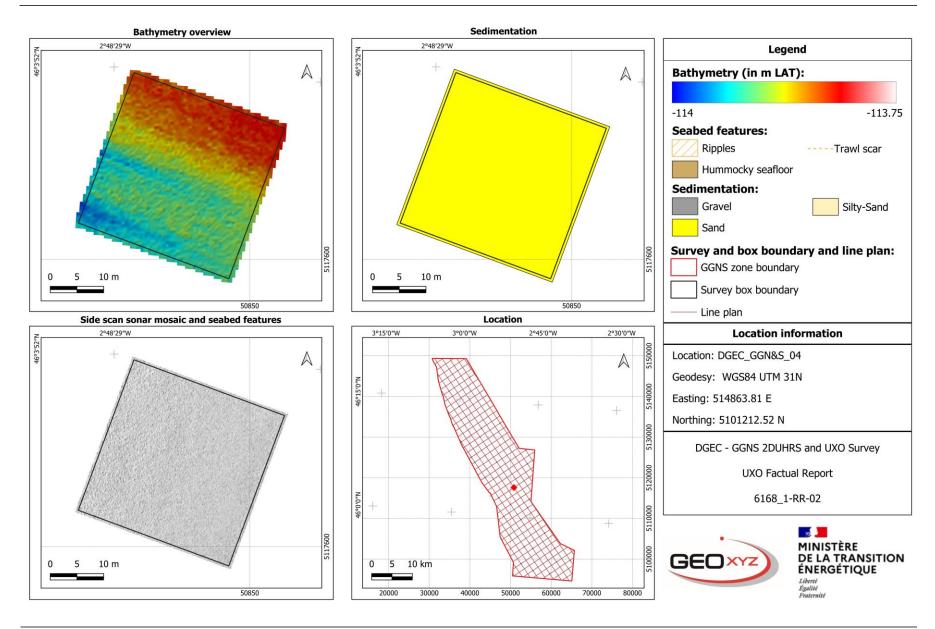

There were no targets within the surveyed boxes for either MBES nor SSS inside each 30 x 30 survey box.

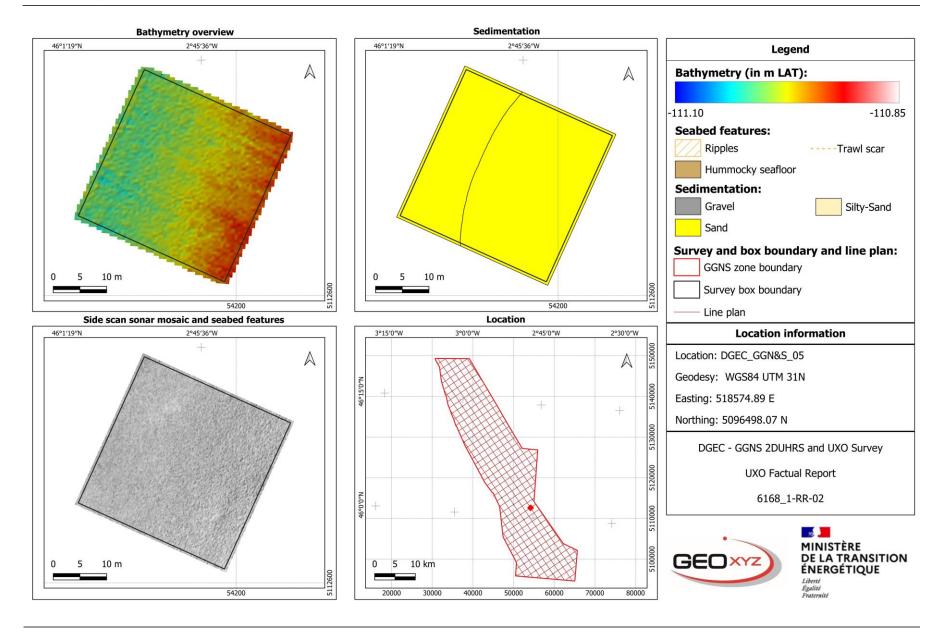
www.geoxyz.eu Page 28 of 60

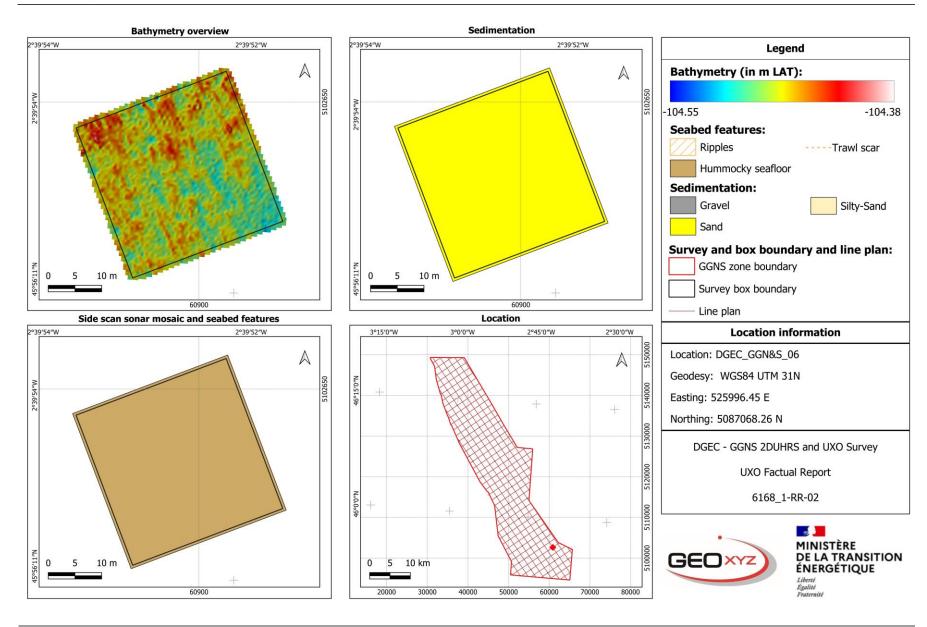
APPENDIX A. GGN&S UXO BOX CHARTS

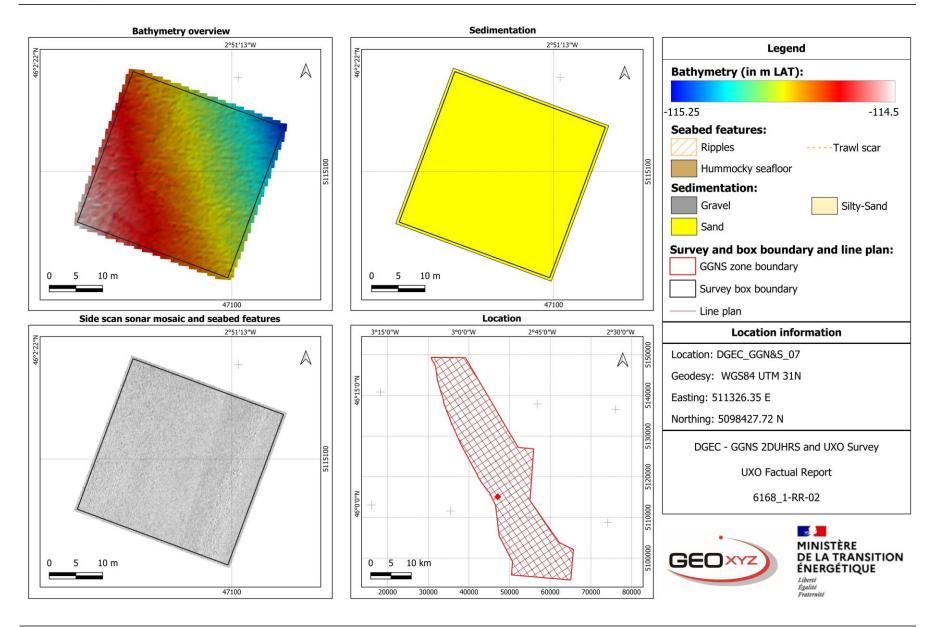

www.geoxyz.eu Page 29 of 60

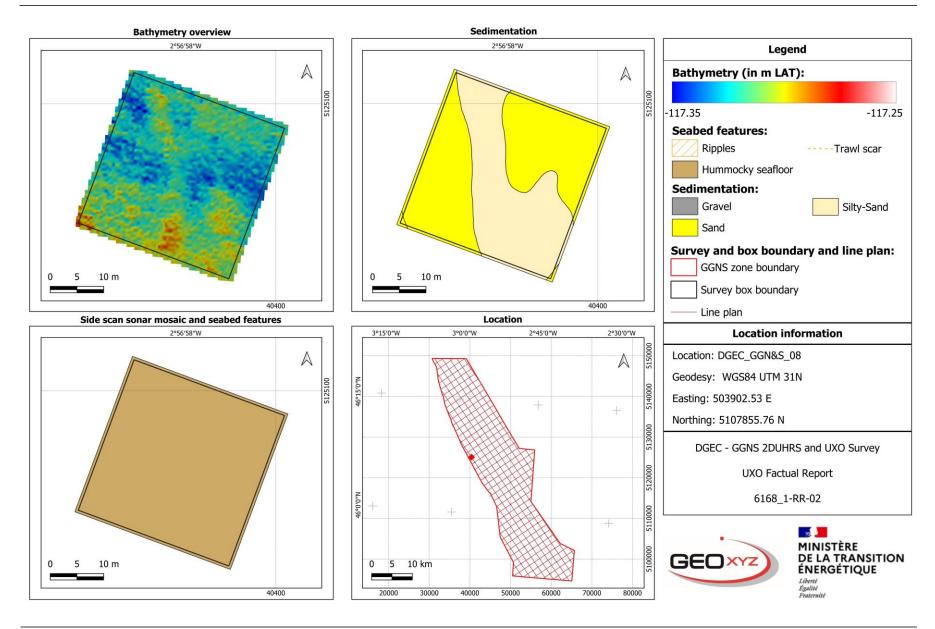

www.geoxyz.eu Page 30 of 60

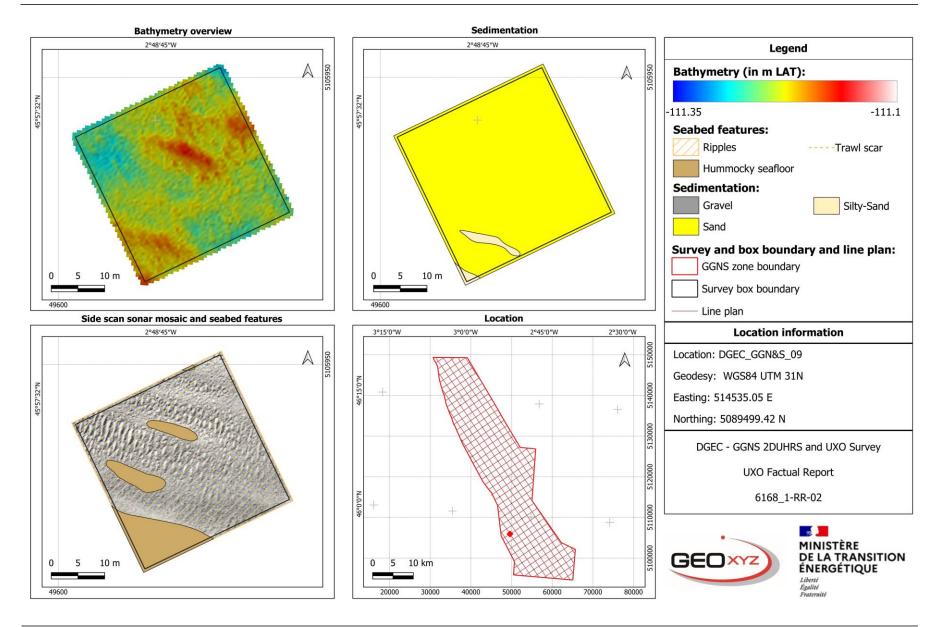

www.geoxyz.eu Page 31 of 60

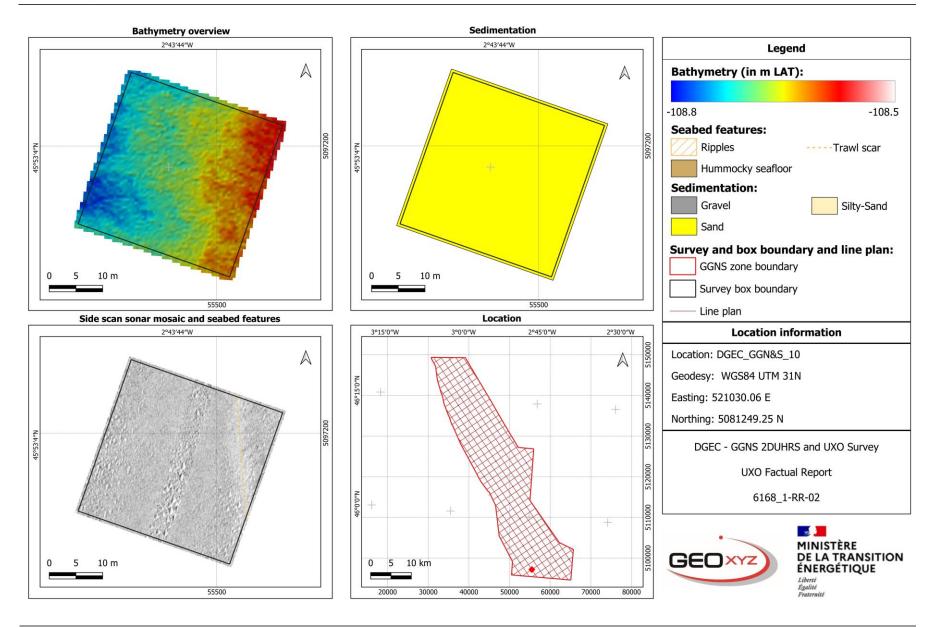

www.geoxyz.eu Page 32 of 60

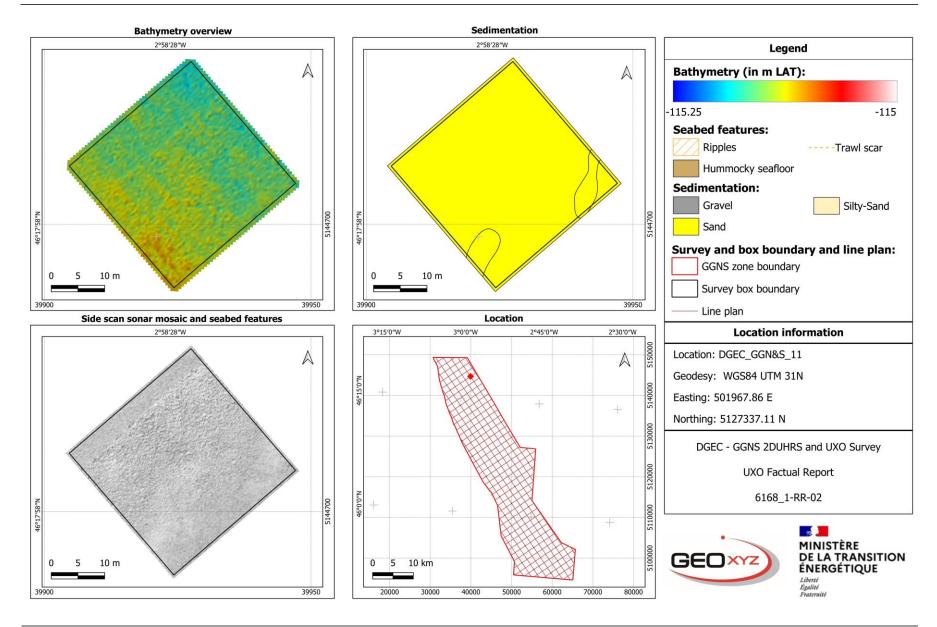

www.geoxyz.eu Page 33 of 60

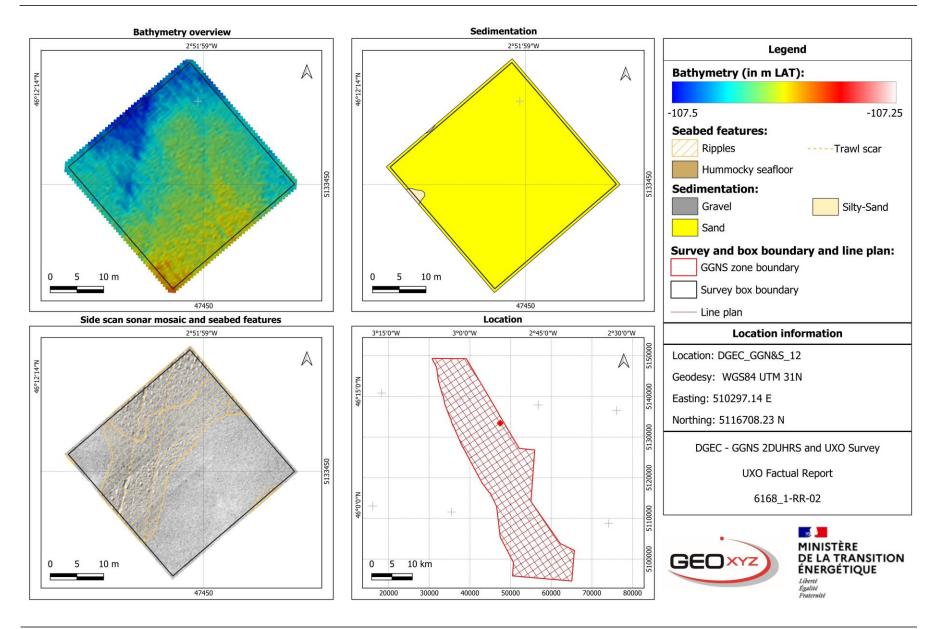

www.geoxyz.eu Page 34 of 60

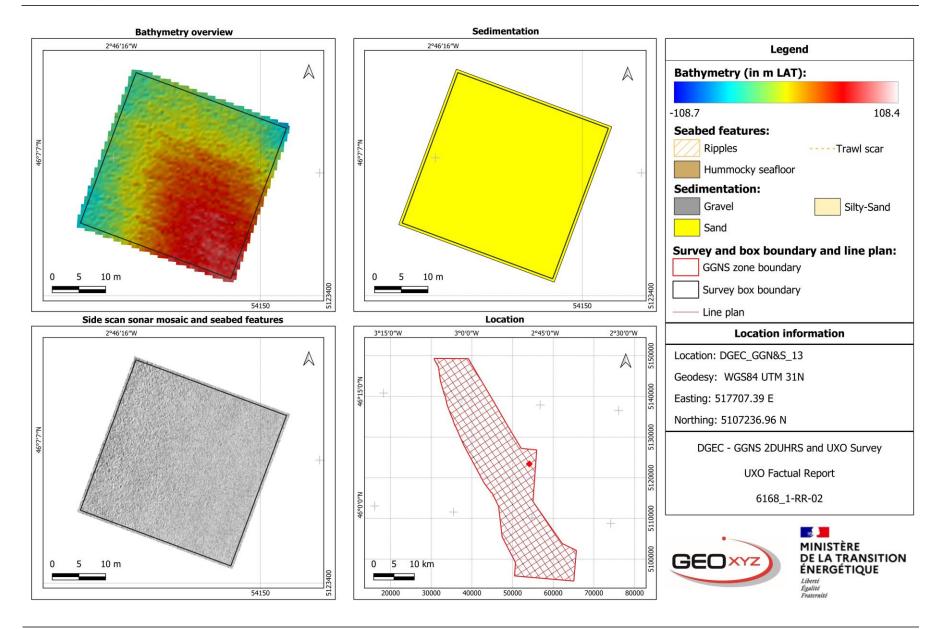

www.geoxyz.eu Page 35 of 60

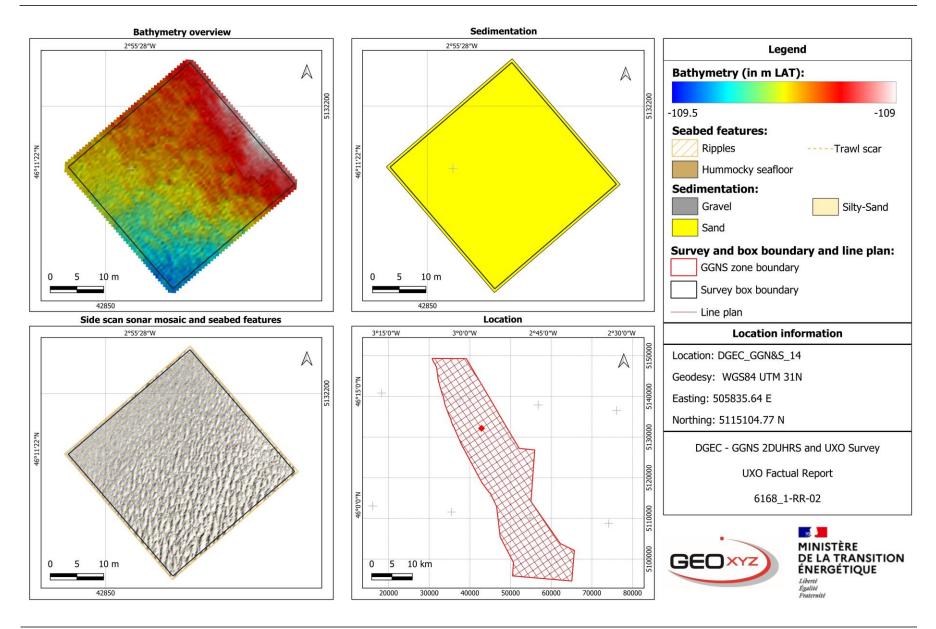

www.geoxyz.eu Page 36 of 60

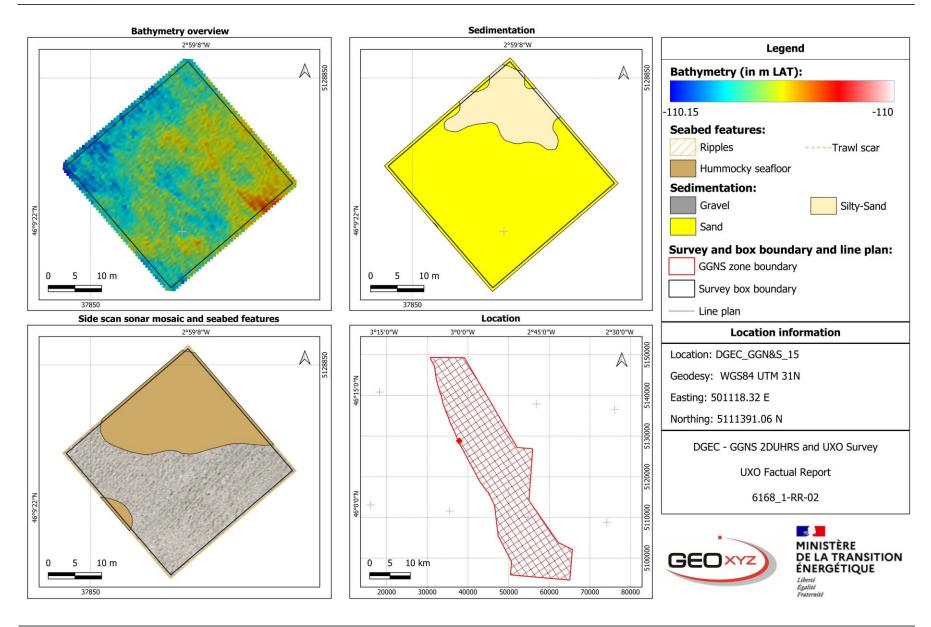

www.geoxyz.eu Page 37 of 60

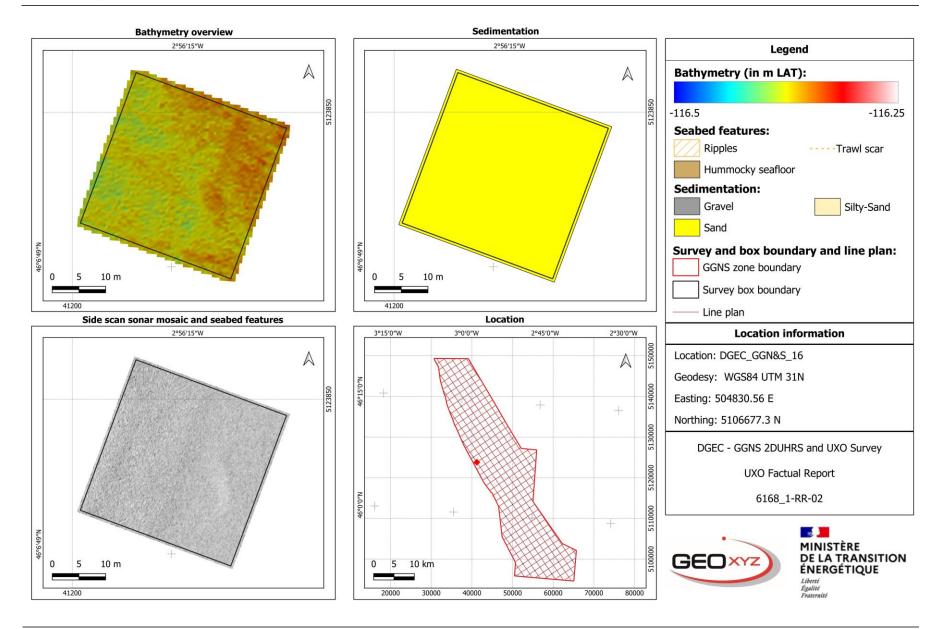

www.geoxyz.eu Page 38 of 60

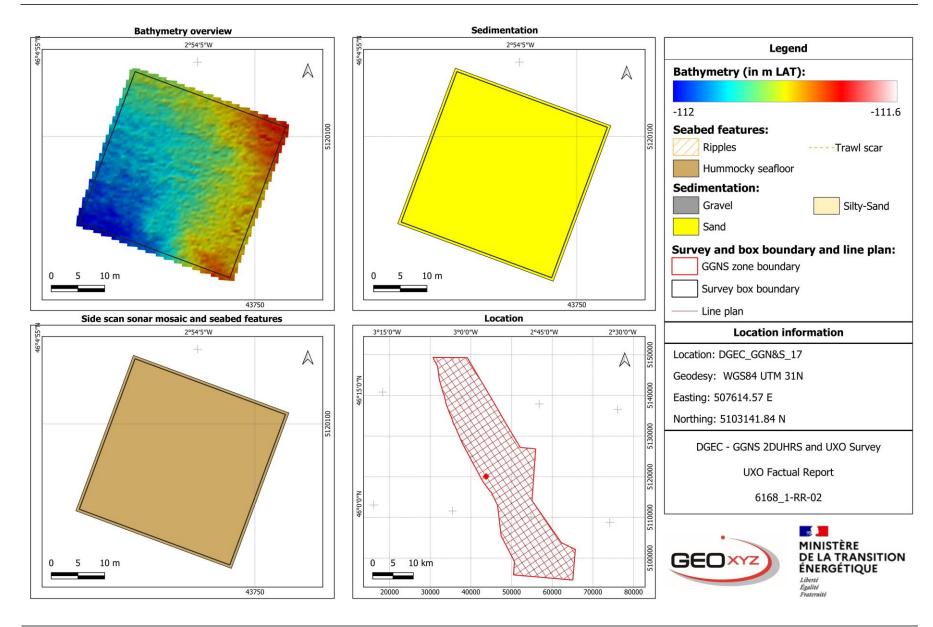

www.geoxyz.eu Page 39 of 60

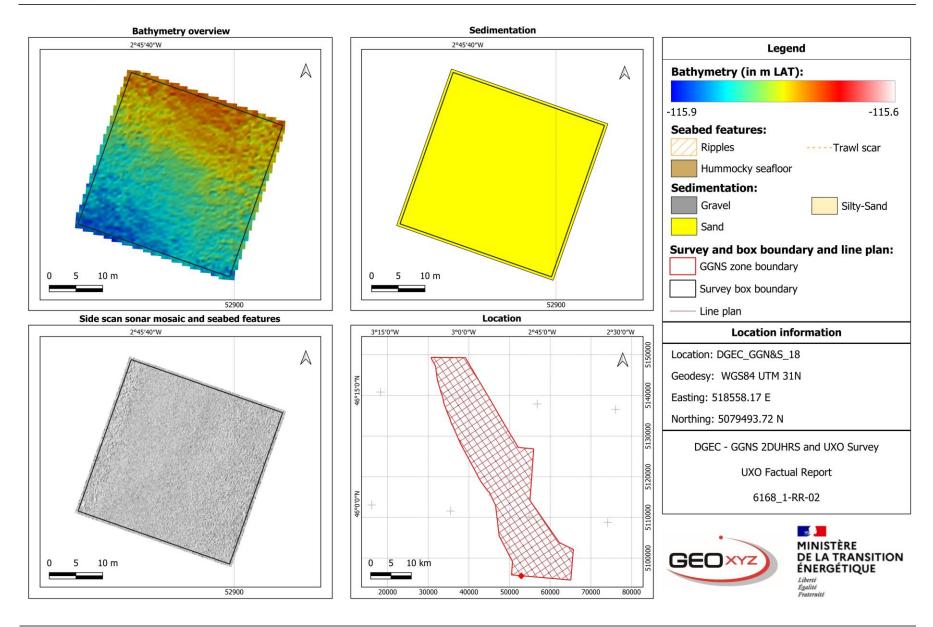

www.geoxyz.eu Page 40 of 60

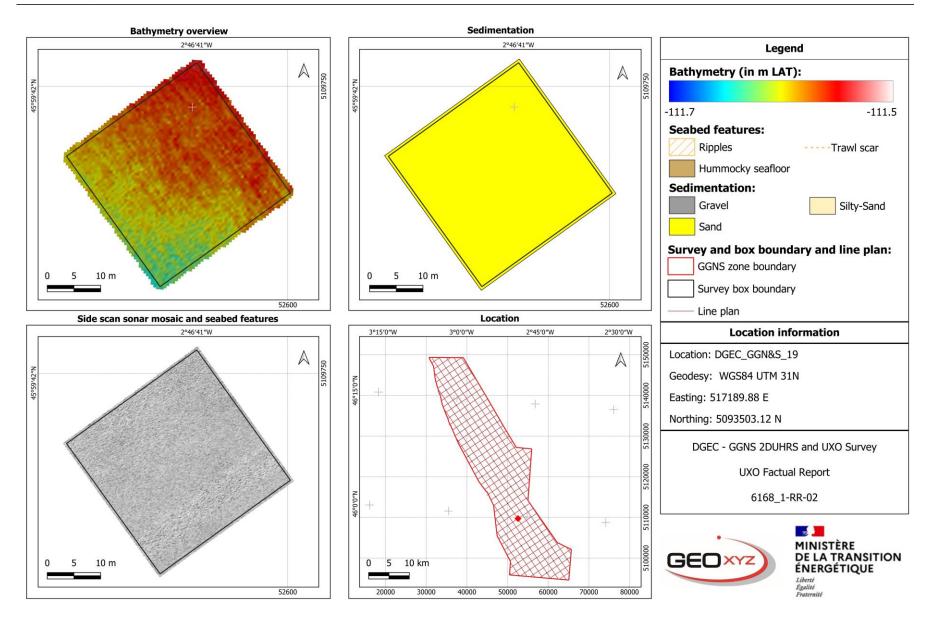

www.geoxyz.eu Page 41 of 60

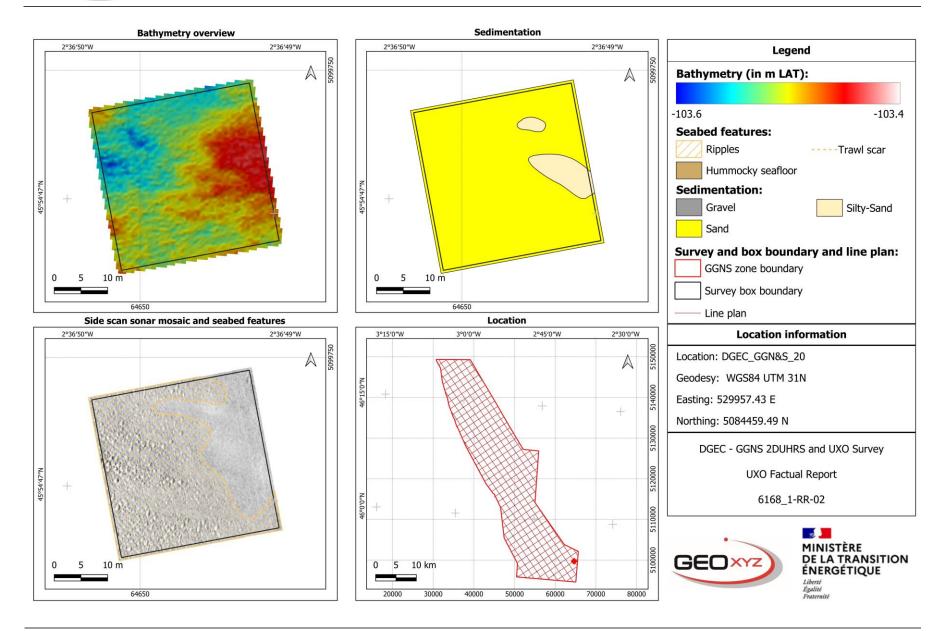

www.geoxyz.eu Page 42 of 60

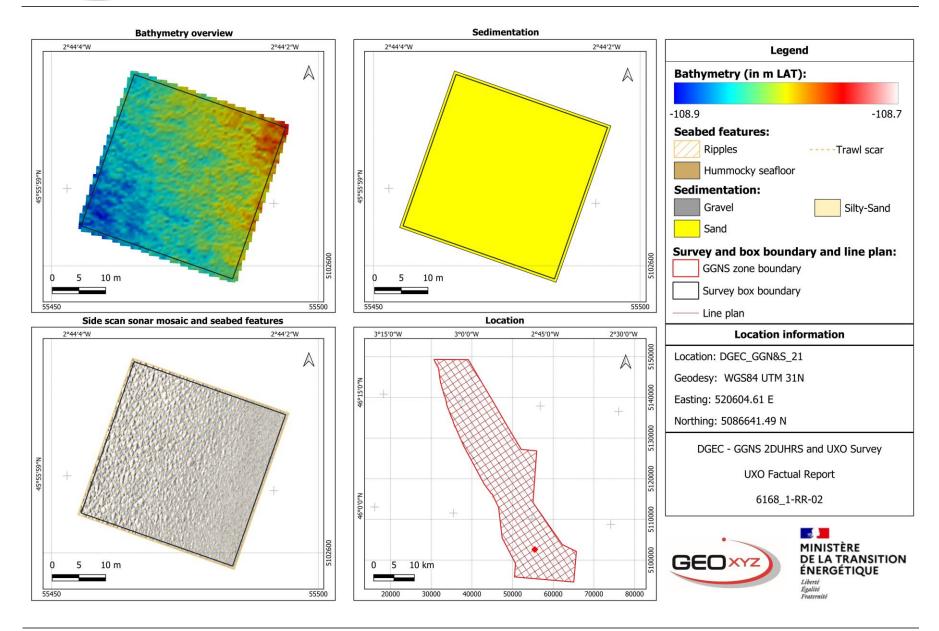

www.geoxyz.eu Page 43 of 60

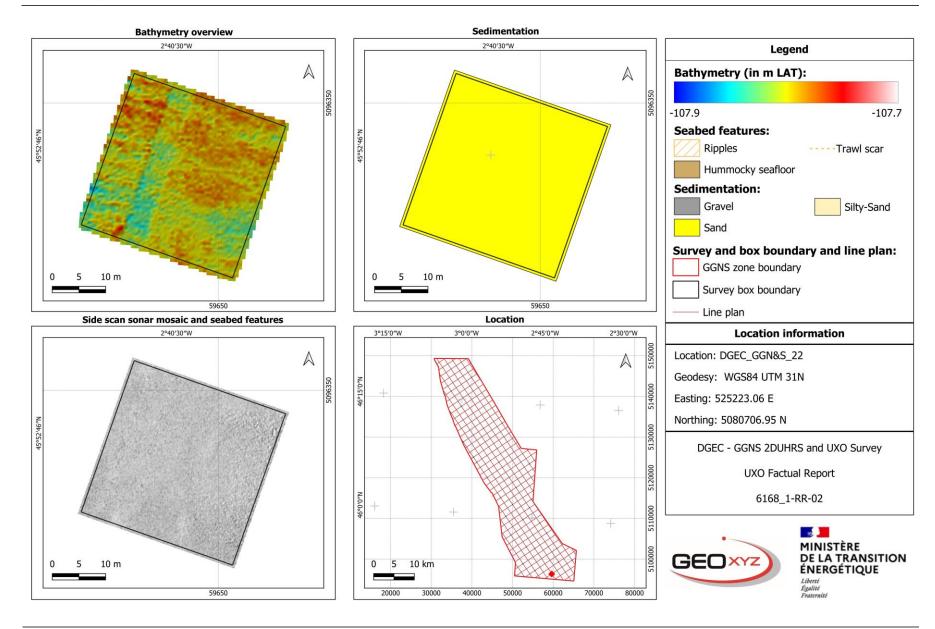

www.geoxyz.eu Page 44 of 60

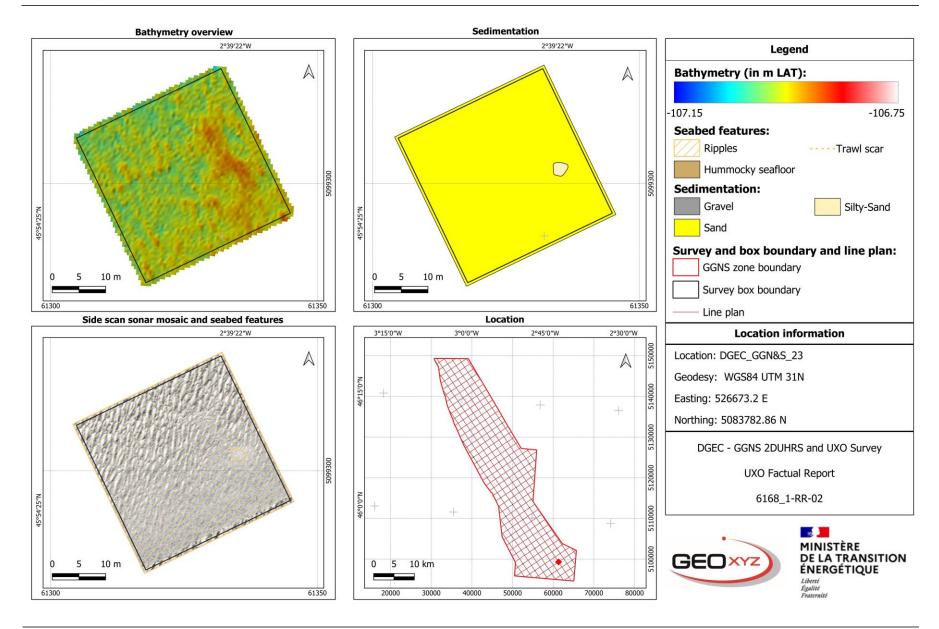

www.geoxyz.eu Page 45 of 60

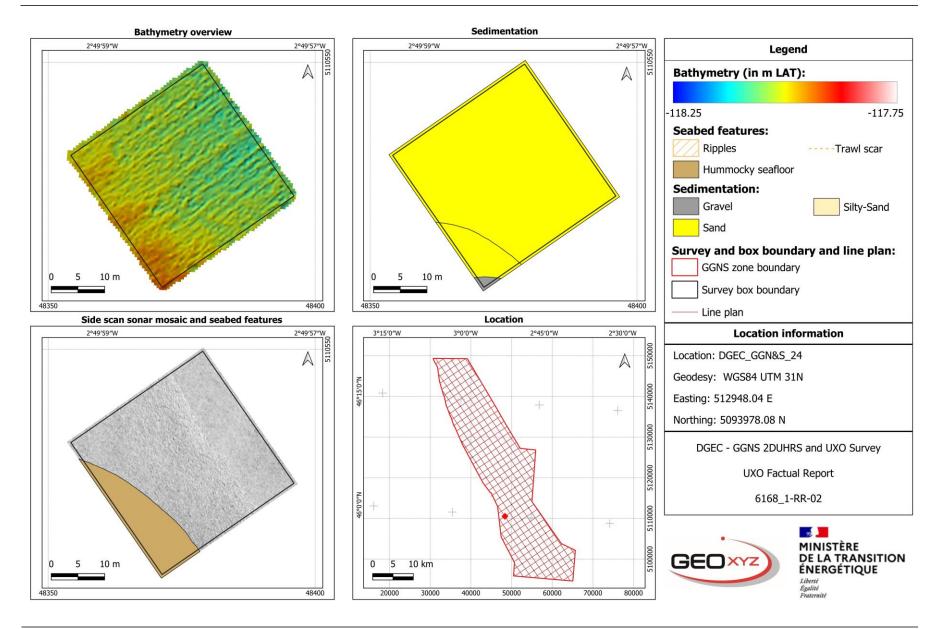

www.geoxyz.eu Page 46 of 60

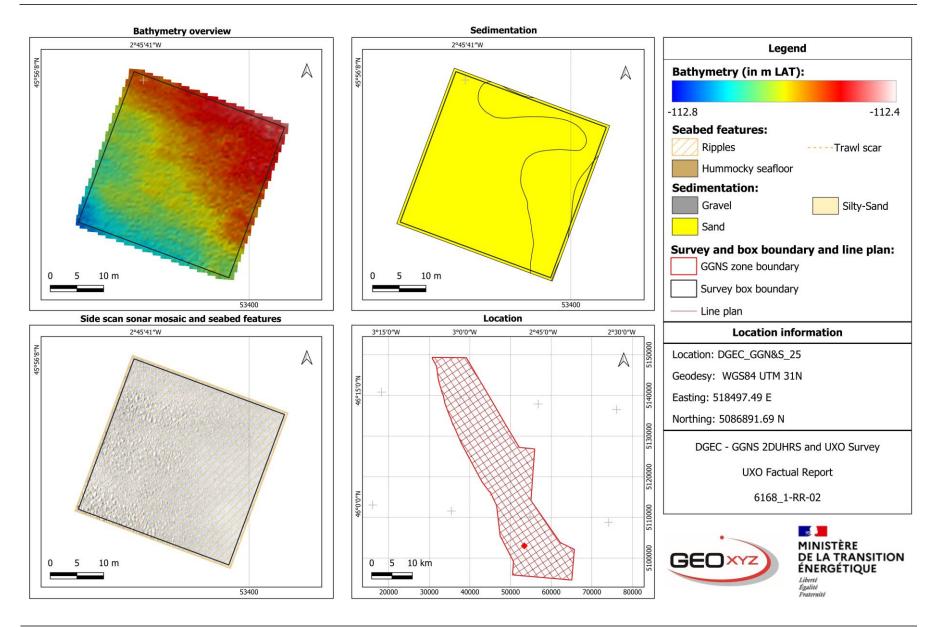

www.geoxyz.eu Page 47 of 60

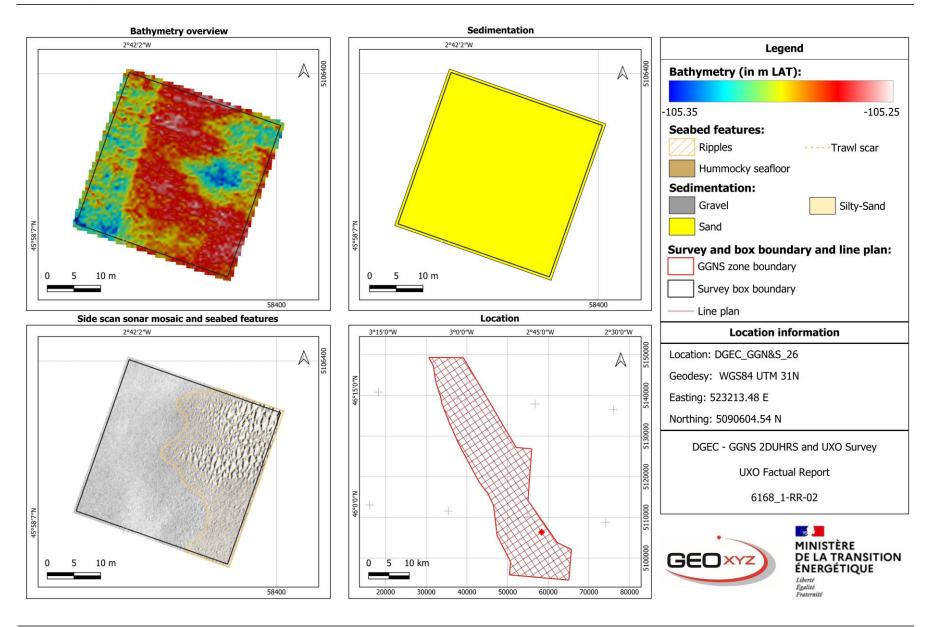

www.geoxyz.eu Page 48 of 60

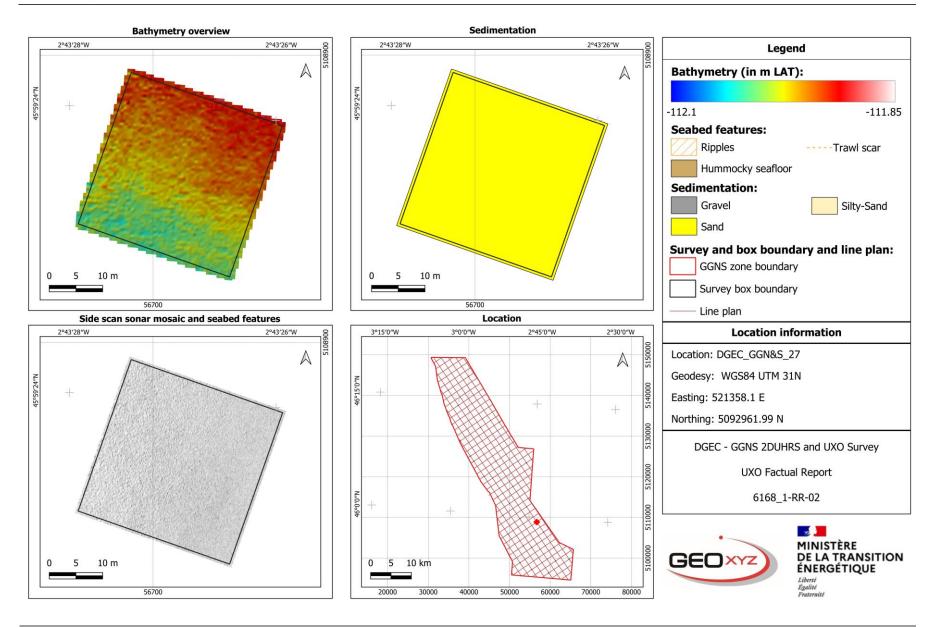

www.geoxyz.eu Page 49 of 60

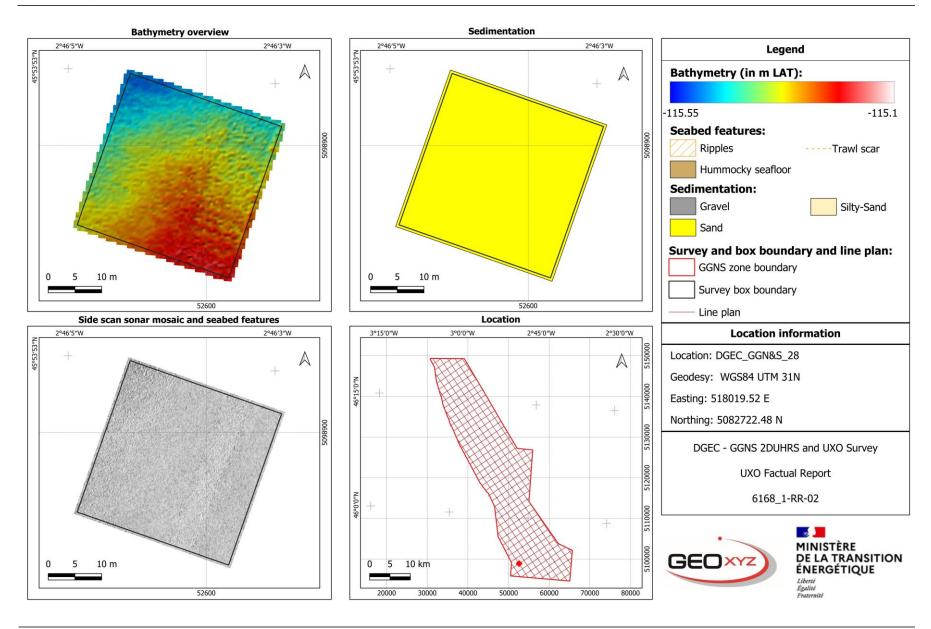

www.geoxyz.eu Page 50 of 60

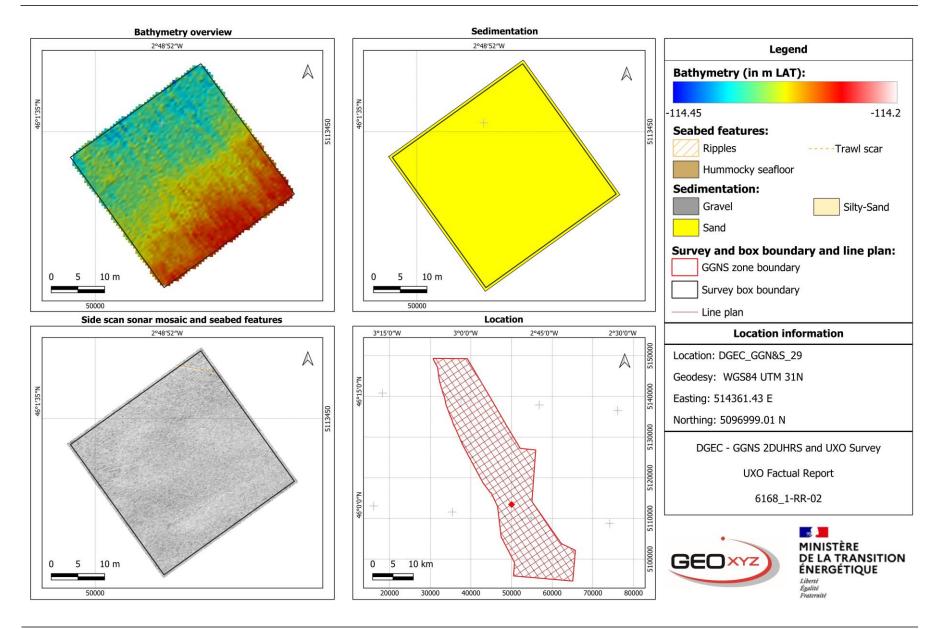

www.geoxyz.eu Page 51 of 60

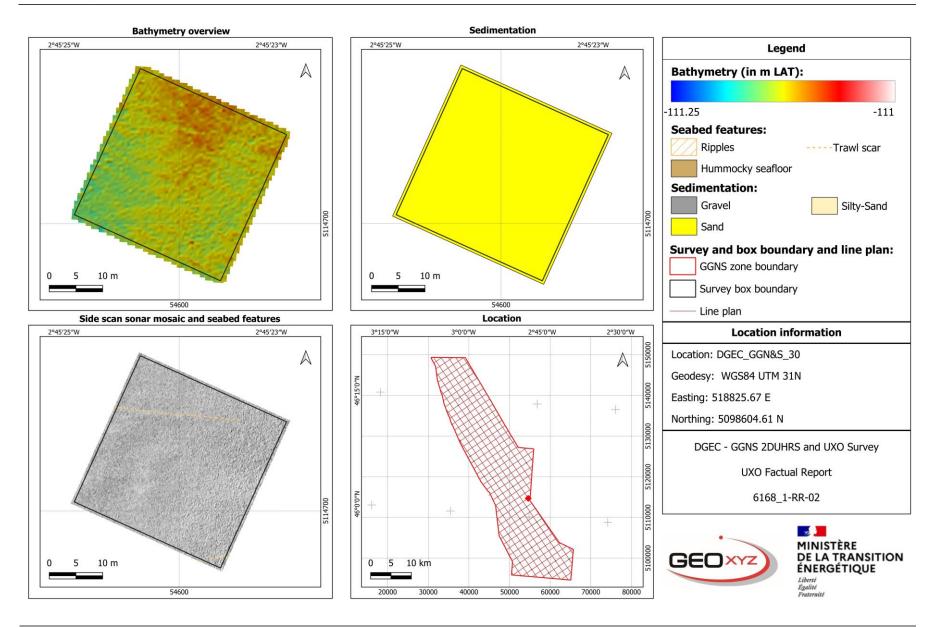

www.geoxyz.eu Page 52 of 60


www.geoxyz.eu Page 53 of 60


www.geoxyz.eu Page 54 of 60


www.geoxyz.eu Page 55 of 60


www.geoxyz.eu Page 56 of 60


www.geoxyz.eu Page 57 of 60

www.geoxyz.eu Page 58 of 60

www.geoxyz.eu Page 59 of 60

APPENDIX B. ALARP CERTIFICATES

www.geoxyz.eu Page 60 of 60