

DGEC - BNO 2DUHRS and UXO Survey

UXO Factual Report - Accepted

Project Document Code	6168_4-RR-02-A
-----------------------	----------------

2.0	01/08/2025	First issue to Client	LSM	EVA	AMO
Revision	Date	Description of Revision	Author	Checked	Approved

SERVICES WARRANTY

1 The Report and its associated works and services have been prepared in accordance with an agreed contract n°1300193396 (the "Contract") between the Contractor and the Client as named at the front of this report. The Report is expressly intended to be used and match requirements and specifications as set forth in the Contract.

2 The Contractor has exercised due care and diligence in the preparation of the Report, applying the level of skill and expertise reasonably expected of a reputable Contractor experienced in the specific types of work conducted under the Contract.

3 Any findings, conclusions, and opinions presented in the Report are based on an interpretation of the available data. It is acknowledged that professionals may differ in their interpretations and opinions. Unless explicitly stated otherwise, the Report does not constitute a recommendation for any specific course of action.

4 In the event of any changes in the circumstances under which the Report was prepared and/or is to be used, including but not limited to alterations in site conditions, modifications to the client's final objectives, or changes to relevant legislation after the Report's production, some or all of the results contained herein may become invalid. The Contractor disclaims any liability arising from the usage of the Report under such changed circumstances.

5 The Contractor assumes no responsibility or liability to any other party in respect of or arising out of the Report and/or its contents. Any reliance placed upon the Report and/or its contents by any third party is done so entirely at their own risk.

6 By accepting the Report, the Client acknowledges and agrees to the terms and conditions outlined herein.

www.geoxyz.eu Page 2 of 57

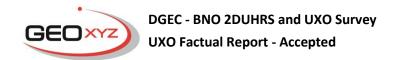
REVISION HISTORY

The table on this page should be used to explain the reason for the report revision and what has changed since the previous revision. It is the holder's responsibility to check that they hold the latest validated version.

Rev.	Date	Reason for amendments	Section changes from previous version
1.0	28/07/2025	First draft	
2.0	01/08/2025	Client comments addressed, Accepted	Ref "6168_4-RR-02_UXO Factual Report_BNO_Rev1.0_CS_DNV_20250729"

Author		Role and Function in the company
LSMA	Luka Smajo	Reporter
EVA	Elke Vandekerkhove	Reporting & Interpretation coordinator
AMO	Aida Molina	Project Data Coordinator

www.geoxyz.eu Page 3 of 57


TABLE OF CONTENTS

1	IN	NTRODUCTION	. 11
	1.1	Project overview	. 11
	1.1	1 Areas of Study	. 11
	1.1		
	1.2	Scope of work	. 12
	1.3	Scope of document	
2	G	EODETIC PARAMETERS AND TRANSFORMATIONS	15
	2.1	Horizontal datum	. 15
	2.2	Vertical reference	
	2.3	Time and log keeping	. 15
	2.4	Survey units	. 16
3	RI	ESOURCES	. 17
	3.1	Vessels	17
	3.2	Equipment	17
	3.3	Software	. 17
4	o	PERATIONAL SUMMARY	19
5	D	ATA PROCESSING	. 20
	5.1	Multibeam echosounder	. 20
	5.1	1 Data acquisition and settings	. 20
	5.1	2 Overview of the methodology	. 21
	5.1	3 Data quality assessment	. 22
	5.1	.4 MBES deliverables	. 23
	5.2	Side scan sonar	. 23
	5.2	.1 Data acquisition and settings	23
	5.2	.2 Overview of the methodology	. 24
	5.2	3 Data quality assessment	. 26
	5.2	.4 SSS deliverables	. 26
	5.3	Magnetometer	. 27
	5.3	.1 Data acquisition and settings	. 27
	5.3	3.2 Overview of the methodology	. 27
	5.3	,	
	5.3	.4 MAG deliverables	. 31
6	RI	ESULTS	. 32
	6.1	Overview	. 32
	6.2	Bathymetry	. 32
	6.3	Seabed sediments and morphology	. 32

6.4	Contacts and debris	33
7 ((DNCLUSION	35
	IX A. BNO UXO box charts	
APPEND	IX B. ALARP certificates	57

<u>www.geoxyz.eu</u> Page 5 of 57

LIST OF TABLES

Fable 1-1: Original and updated ALARP box's locations	14
Fable 1-2: Project reports	14
Fable 2-1: Datum parameters	15
Fable 2-2: Projection parameters	15
Fable 3-1: Survey vessel specifications	17
Fable 3-2: Survey equipment specifications	17
Fable 3-3: Project software list	18
Fable 4-1: Overview of survey operations	19
Fable 5-1: MBES acquisition parameters	20
Fable 5-2: MBES specifications	20
Fable 5-3: THU and TVU values	22
Table 5-4: Overview of the MBES deliverables	23
Fable 5-5: SSS acquisition parameters	23
Fable 5-6: Overview of the SSS deliverables	26
Fable 5-7: Magnetometer system settings	27
Fable 5-8: Magnetometer specifications	27
Table 5-9: Overview of the MAG deliverables	31
Fable 6-1: Number and distribution of seabed features	32
Table 6-2: Number and distribution of MBES, SSS and MAG targets	33

www.geoxyz.eu Page 6 of 57

LIST OF FIGURES

Figure 1-1: Project location overview - location of the four maritime facades	11
Figure 1-2: Scope of work area	12
Figure 1-3: Bathymetry overview of the work area	13
Figure 5-1: MBES processing workflow	21
Figure 5-2: BNO GI07 Bathymetric Data Hit Count per 1 m square (green is > 15 hits per bin, rec	d is <15 hits
oer bin)	22
Figure 5-3: SSS processing workflow	25
Figure 5-4: SSS mosaic along Box BNO GI15	26
Figure 5-5: MAG processing workflow	29
Figure 5-6: Example of position accuracy within all sensors	30
Figure 5-7: Example of residual data along GNO GI16 box	31

<u>www.geoxyz.eu</u> Page 7 of 57

LIST OF APPENDICES

Appendix A: ALARP box charts (within this document)

Appendix B: ALARP certificates

www.geoxyz.eu Page 8 of 57

DEFINITIONS AND ABBREVIATIONS

Throughout this document the following terminology is used:

DGEC Direction Générale de l'Energie et du Climat (DGEC) (Client)

GEOxyz GEOxyz (Contractor)

Geomines Geomines (Sub-contractor)

The abbreviations and units listed in the table below are used within this report. Where abbreviations used in this document are not included in this table, it may be assumed that they are either equipment brand names or company names.

Acronym	Description	Acronym	Description
ALARP	As Low As Reasonably Practicable	Port	Portside
ASCII	American Standard Code for Information Interchange	QC	Quality Control
DTM	Digital Terrain Model	QINSy	Quality Integrated Navigation System
EGN	Empirical Gain Normalisation	QPS	Quality Positioning Services B.V.
EPSG	European Petroleum Survey Group	RGB	Red Green Blue
FMGT	Fledermaus Geocoder Toolbox	RX	Receiver
GNSS	Global Navigation Satellite System	Rev	Revision
GOVI	Geo Ocean VI	SHOM	Service Hydrographique et Oceanographique de la Marine
GRS80	Geodetic Reference System 1980	SSS	Side Scan Sonar
HF	High Frequency	SVS	Sound Velocity Sensor
HSE	Health, Safety and Environment	THU	Total Horizontal Uncertainty
HiPAP	High precision acoustic positioning	TVG	Time Varied Gain
IMU	Inertial Measurement Unit	TVU	Total Vertical Uncertainty
INS	Inertial Navigation System	UHR	Ultra-High Resolution
LAT	Lowest Astronomical Tide	UHRS	Ultra-High Resolution Seismic
LF	Low Frequency	USBL	Ultra-Short Baseline
MAG	Magnetometer	UTC	Universal Time Coordinated
MBES	Multibeam Echosounder	UTM	Universal Transverse Mercator
MRU	Motion Reference Unit	UXO	Unexploded Ordnance
OR	Operation Report	WGS84	World Geodetic System 1984
РВМА	Plus Basses Mers Astronomiques	ZDA	NMEA-0813 Date Time Message String (UTC, day, month, year, and local time zone offset)
PPS	Pulse per Second	ZH	Zero Hydrographic

www.geoxyz.eu Page 9 of 57

REFERENCE DOCUMENTATION

GEOxyz Project Documents

Key project documentation created by GEOxyz is listed in table below.

Ref.	Document Number	Title	Owner
1.	6168_4-PDR-01	Project Document Register	GEOxyz
2.	6168_4-HSE-01	HSE Plan	GEOxyz
3.	6168_4-DDL-01	Data Deliverables List	GEOxyz
4.	6168_4-ERB-01	Emergency Response & Bridging Document	GEOxyz
5.	6168_4-PEP-01	Project Execution Plan	GEOxyz
6.	6168_4-PQP-01	Project Quality Plan	GEOxyz
7.	6168_4-PRA-01	Project Risk Assessment	GEOxyz
8.	6168_4-CM-01	Communication Matrix	GEOxyz

Standard Operating Procedures

Standard GEOxyz operating procedures that are relative to the project are listed in table below or reference.

Ref.	Document Number	Title	Owner
9.	GEO-OPP-6028	Positioning Systems Operation Procedure	GEOxyz
10.	GEO-OPP-6029	Heading Sensor Operation Procedure	GEOxyz
11.	GEO-OPP-6030	MRU Operation Procedure	GEOxyz
12.	GEO-OPP-6031	SVP Operation Procedure	GEOxyz
13.	GEO-OPP-6032	USBL Operation Procedure	GEOxyz
14.	GEO-OPP-6033	MBES Operation Procedure	GEOxyz
15.	GEO-OPP-6038	SSS Operation Procedure	GEOxyz
16.	GEO-OPP-3039	SBP Operation Procedure	GEOxyz
17.	GEO-OPP-6040	Magnetometer & Gradiometer Operation Procedure	GEOxyz
18.	GEO-OPP-6052	MBES Data Processing Procedure	GEOxyz
19.	GEO-OPP-6053	Magnetometer Data Processing Procedure	GEOxyz
20.	GEO-OPP-6054	SSS Data Processing Procedure	GEOxyz
21.	GEO-OPP-6055	SBP Data Processing Procedure	GEOxyz
22.	GEO-OPP-6109	UHRS Operation	GEOxyz

Project-specific Procedures

Project-specific procedures (PSPs) relevant to the project are listed in table below or reference.

Ref.	Document Number	Title	Owner
23.	GEO-G008-OPP-6011	L&R Procedure USBL Pole	GEOxyz
24.	GEO-G008-OPP-6033	L&R Procedure - Single TVG	GEOxyz
25.	GEO-G008-OPP-6003	L&R Procedure - SSS & Mag	GEOxyz
26.	GEO-G008-OPP-6001	L&R Procedure SVP	GEOxyz
27.		jncc-guidelines-seismicsurvey-aug2017-web	JNCC

www.geoxyz.eu Page 10 of 57

1 INTRODUCTION

1.1 PROJECT OVERVIEW

As part of the development of offshore wind energy in France, the DGEC is responsible for the technical studies prior to the award of tenders for offshore wind farms. For each area identified as suitable for the development of wind farms, "de-risk studies" were carried out in order to analyse the seabed on the surface and sub-surface.

1.1.1 Areas of Study

Four maritime façades have been identified to cover the areas where the development of offshore wind power is envisaged (Figure 1-1). The purpose of the contract is to carry out geophysical and UXO de-risking studies for approximately seven to eight sites spread throughout the metropolitan territory. This territory has been divided into four maritime façades:

- Eastern Channel North Sea (MEMN)
- North Atlantic Western Channel (NAMO)
- South Atlantic (SA)
- Mediterranean (MED)

These sites are located in the continental shelf area, generally between 12 and 50 nautical miles from the coast.

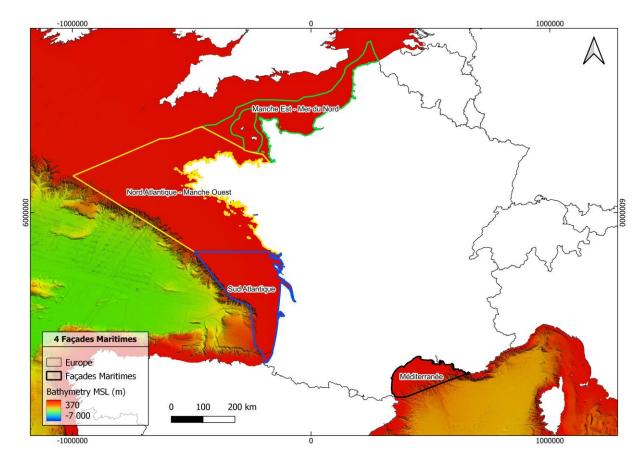


Figure 1-1: Project location overview - location of the four maritime facades

www.geoxyz.eu Page 11 of 57

1.1.2 Objectives

The main objectives of the de-risk studies were to:

- Provide UHR seismic, MBES bathymetry, and sub-bottom profiler high-quality data to better understand the surface and sub-surface conditions;
- Provide side-scan sonar and magnetometer data that were used to issue ALARP certificates prior to the completion of geotechnical testing.

1.2 SCOPE OF WORK

The overall scope of work consists of geophysical and UXO surveys in the Nord Atlantique Manche Ouest (BNO) zone as shown in Figure 1-2. An overview of the bathymetry of the work area is presented in Figure 1-3.

Figure 1-2: Scope of work area

www.geoxyz.eu Page 12 of 57

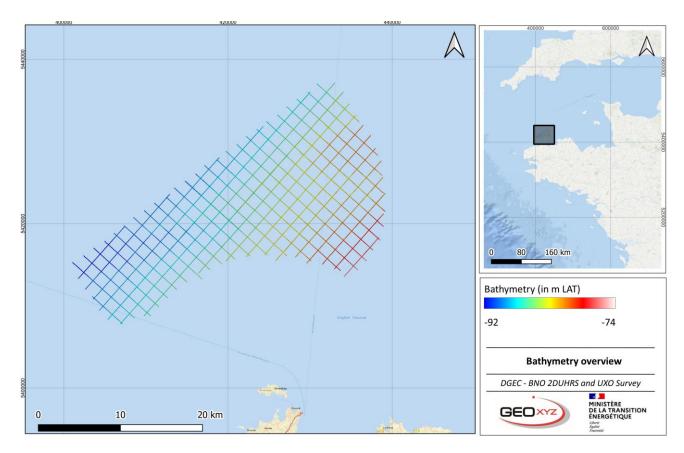


Figure 1-3: Bathymetry overview of the work area

The UXO survey comprised of the acquisition of magnetometer (MAG), multibeam bathymetry (MBES) and side scan sonar (SSS) sensor data. As far as possible, data from all sensors were acquired simultaneously, with line planning as per the client specifications.

Client specifications are for 30 m x 30 m ALARP areas however, UXO subcontractor requirements for ALARP certification require sufficient data on the edges of the boundary to allow for UXO migration. This results in the survey zone increasing to a $60 \text{ m} \times 60 \text{ m}$ box. The ALARP certificates contain as minimum:

- A summary of the work conducted;
- A list of results with their classification, images, and coordinates;
- Maps of the study area with all UXO-like observations and the avoidance radius
- Where necessary, the radius around the observations must be provided;
- The signature of the Licensee's UXO specialist;

The process of issuing ALARP certificates goes as follows: After geophysical data analysis, the white zones, with risks as low as reasonably (ALARP) possible are sought. This is done by geospatial processing in GIS software. First, the areas that could not be considered as white areas are mapped, grouping the pUXO targets (sonar and MBES contacts) and potential saturated areas. Afterwards, the "avoidance areas" are mapped with an avoidance zone of safety buffer radius away from all the potential UXO (pUXO) anomalies or any saturated or excluded areas. This avoidance area is also applied from the edge of the dataset inwards the centre of the survey area. The free space between these avoidance zones and the detection surface or survey boundary defines the outline of the ALARP certificate and the possible working area. Some boxes have been

www.geoxyz.eu Page 13 of 57

moved from the original location to issue the ALARP certificates. The original and the updated locations, as well as the distance between them are shown in Table 1-1.

Table 1-1: Original and updated ALARP box's locations

Name	Status	X centroid	Y centroid	Distance Original-Updated (m)
BNO_GI#01	Relocated	427075.41	5428214.65	21.55
BNO_GI#02	Relocated	437794.35	5426679.97	5.85
BNO_GI#03	Relocated	431214.16	5432685.07	142.50
BNO_GI#04	Relocated	426593.10	5418623.72	4.28
BNO_GI#05	Relocated	412760.00	5418881.03	24.09
BNO_GI#06	Relocated	415066.57	5416899.33	73.91
BNO_GI#07	Relocated	434030.29	5417960.64	2.66
BNO_GI#08	Relocated	414111.47	5413633.27	22.37
BNO_GI#09	Relocated	419145.82	5417223.48	0.18
BNO_GI#10	Relocated	411963.91	5415669.97	73.36
BNO_GI#11	Relocated	416830.35	5421238.50	52.64
BNO_GI#12	Relocated	421009.69	5423621.97	8.22
BNO_GI#13	Relocated	426181.23	5425026.68	28.42
BNO_GI#14	Relocated	429512.16	5421948.04	63.80
BNO_GI#15	Relocated	432315.04	5429579.27	6.13
BNO_GI#16	Relocated	433694.51	5424337.50	4.53
BNO_GI#17	Original	437034.35	5421322.95	0
BNO_GI#18	Original	436555.98	5429806.78	0
BNO_GI#19	Relocated	409659.35	5417656.67	4.32
BNO_GI#20	Relocated	422315.88	5418357.83	33.06

1.3 SCOPE OF DOCUMENT

Table 1-2 lists all the reports delivered as part of this survey, with this report highlighted in **bold**.

Table 1-2: Project reports

Document Number	Title	
6168_4-OR-01	Operations Report - GOVI	
6168_4-MCR-01	Mobilisation & Calibration Report - GOVI	
6168_4-RR-01	UHRS Factual Report	
6168_4-RR-02	UXO Factual Report (This Report)	

www.geoxyz.eu Page 14 of 57

2 GEODETIC PARAMETERS AND TRANSFORMATIONS

2.1 HORIZONTAL DATUM

The geodetic datum and mapping coordinate system used for this project is WGS84 UTM Zone 30N. All coordinates used are referenced to the geodetic datum and grid parameters listed in Table 2-1 and Table 2-2 below.

Table 2-1: Datum parameters

Parameter	Details		
Geodetic Datum	World Geodetic System 1984 (WGS84)		
EPSG Coordinate Reference System	4258		
Spheroid	GRS80		
EPSG Ellipsoid Code	7019		
Semi-Major Axis	6378137.000		
Semi-Minor Axis	6356752.31424		
Flattening	1/298.257223563		
Eccentricity Squared	0.00669428002290		

Table 2-2: Projection parameters

Parameter	Details
EPSG Coordinate Reference Code	32630
Projection	UTM
Zone	30N
Central Meridian	3° West
Latitude of Origin	0°
False Easting	500000.00 m
False Northing	0.00 m
Scale Factor at Central Meridian	0.9996
Units	Metres

2.2 VERTICAL REFERENCE

The vertical reference which has been used is the Zéro Hydrographique (ZH) defined by the surface Lowest Astronomical Tide (LAT). Reduction was made via the SHOM Bathyelli (PBMA Plus Basses Mers Astronomiques in French) v2.1 model.

2.3 TIME AND LOG KEEPING

UTC (Universal Time Coordinated) has been used for record keeping during the project (including the Daily Progress Reports, unless stated otherwise). The vessel maintained local time for operations.

Data time-tagging and synchronization used UTC. All data recorded in the online navigation software was time stamped where appropriate using the time string and the pulse-per-second (PPS) from the GNSS.

www.geoxyz.eu Page 15 of 57

2.4 SURVEY UNITS

The following survey units were used during the project and throughout this report;

- Linear units are expressed in international metres (m)
- Angular units are expressed in degrees (°)

www.geoxyz.eu Page 16 of 57

3 RESOURCES

3.1 VESSELS

The specifications of the Geo Ocean IX (GOIX) vessel are summarised in Table 3-1.

Geo Ocean IX GEOxyz Owner: Luxembourg Flag: 53.8 m Length: 13.0 m Width: 4.8 m Draught: Maximum 11.5 knots Speed: 2 x Catapillar Diesel 1575 Main bhp Propulsion: 24 h day operations (28 **Endurance:** days)

Table 3-1: Survey vessel specifications

3.2 EQUIPMENT

The equipment used for the survey is summarised in Table 3-2.

Table 3-2: Survey equipment specifications

Equipment	Manufacturer	Model / Type
GNSS primary GNSS secondary	Trimble Trimble	BX992 c/w OmniSTAR G4+ BX992 c/w OmniSTAR XP
Primary INS / MRU Secondary INS/MRU	iXblue SBG	Hydrins Apogee-I-B Surface IMU
Sound Velocity Profiler	Valeport	Swift 500 x2 Mini SVS
USBL	Kongsberg HiPAP 352P	< 0.44 % of slant range
MBES	Kongsberg	EM2040 RX
Magnetometer	Geometric	G-882 Digital with Tritech PA500/6 altimeter
Sidescan Sonar	Edgetech	4205 / 300/600 kHz

3.3 SOFTWARE

The software that was used for data acquisition and processing is outlined in Table 3-3 below.

www.geoxyz.eu Page 17 of 57

Table 3-3: Project software list

Equipment / Data Type	Acquisition	Processing	
Navigation, MBES, GNSS	QPS QINSy	QPS QINSy v9.6.4	
MBES	QPS QINSy	BeamworX AutoClean 2024.1.1.3 Qimera v2.6.3	
SSS	Edgetech Discover	SonarWiz v7.10.2	
TVG	QINSy	Oasis Montaj 2024.2	
Passive Acoustic Monitoring (PAM)	Subacoustech, 4 broadband elements (up to 250 khz) with PAMGuard (plus spare system)	n/a	

www.geoxyz.eu Page 18 of 57

4 OPERATIONAL SUMMARY

The survey vessel Geo Ocean IX (GOIX) was utilised to complete the MBES/SSS/MAG acquisition during the UXO survey. A summary of the survey operations is outlined in Table 4-1.

Table 4-1: Overview of survey operations

Vessel	Dates	Activity
Geo Ocean IX	22/05/2025 – 16/06/2025	MBES/SSS/MAG UXO survey, transit etc.

www.geoxyz.eu Page 19 of 57

5 DATA PROCESSING

5.1 MULTIBEAM ECHOSOUNDER

5.1.1 Data acquisition and settings

The primary settings used for the project are outlined in Table 5-1. The number of lines acquired per trackplot were 86.

Table 5-1: MBES acquisition parameters

Item	Setting
Survey speed:	~4 knots
Steered node:	No
Beam Spacing:	Equi-distant
Soundings-per-ping:	1024 per head
Swath Opening Angles ¹ :	10 m = 135-140°
System Frequency:	400 kHz
Coverage:	Full coverage bathymetry with 30 % data overlap
Back Scatter Data Required:	Yes (logged but not processed)
Water Column Data to be Recorded:	No
Line Spacing:	See line plan

The MBES project specifications are listed in Table 5-2.

Table 5-2: MBES specifications

Item	Specification
	30HC/m² until 50 m water depth
Minimum data density	15HC/m² between 50-150 m water depth
	9HC/m² between 150-200 m water depth
	0.2 m for <25 m water depth
Bin size	0.5 m for 25 m-50 m water depth
	1 m for 50-200 m water depth
Grid	0.5 m cell size
Gridded standard deviation	≤0.20 m per 1 m² bin
Coverage	100 %, with 30 % overlap between adjacent survey lines
TVU	0.8 m
THU	2 m
Backscatter	Recorded not processed

www.geoxyz.eu Page 20 of 57

¹ Proposed swath is the estimate that was used in the tender phase to check coverage/data density requirements. It may be necessary to adjust this in the field depending on local conditions (whilst still ensuring the required specifications are met).

5.1.2 Overview of the methodology

Bathymetric data was recorded in QINSy as raw QPD files. The data was initially checked offline into the QPS processing software Qimera for quality, coverage, and density requirements. Data processing was carried out using Qimera and AutoClean. First, a rough cleaning was applied in Qimera to remove major spikes and noise. In addition, any SVP/refraction and GNSS drop out issues were fixed. Afterwards, FAU files were exported to continue processing with AutoClean. Bathymetric data was cleaned on a line-by-line basis and/or by using area-based cleaning tools in the processing software. A combination of basic filters applied to the entire data set and then individual QPDs manually cleaned by deleting any further outliers visible within the data.

Figure 5-1 outlines the general MBES processing workflow.

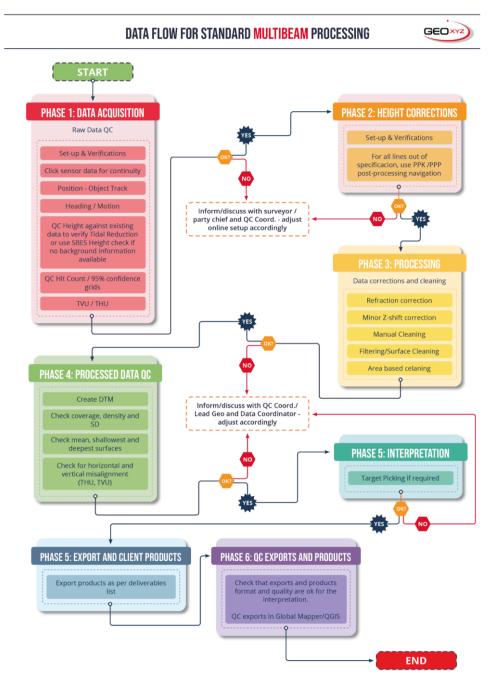


Figure 5-1: MBES processing workflow

www.geoxyz.eu Page 21 of 57

5.1.3 Data quality assessment

For MBES data 69 lines have been acquired with run-in/run out length of 150 metres. The data was of high quality with very little acoustic noise. An example of the number of hits per meter over the required survey areas are described below and illustrated in Figure 5-2. Seabed morphology was well defined in the processed Digital Terrain Models (DTMs).

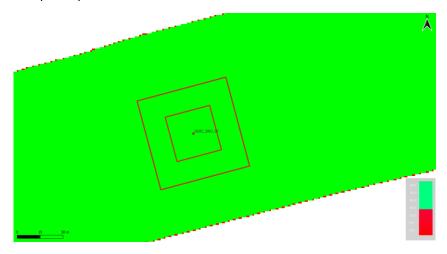


Figure 5-2: BNO GI07 Bathymetric Data Hit Count per 1 m square (green is > 15 hits per bin, red is <15 hits per bin)

The THU (Total Horizontal Uncertainty) and TVU (Total Vertical Uncertainty) values calculated for each box are presented in Table 5-3. These values have been calculated according to the IHO S44 Special Order threshold. TVU has been calculated according to this formula:

$$TVU_{max}\left(d\right) = \sqrt{a^2 + (b \times d)^2}$$

Where **a**, represents that portion of the uncertainty that does not vary with the depth (0.25 m for Special Order); **b**, is a coefficient which represents that portion of the uncertainty that varies with the depth (0.0075 for Special Order) and **d**, is the depth. THU is, according to the IHO Special order, a fix value of 2 metres.

Table 5-3: THU and TVU values

BNO UXO	Depth min	Depth max	Depth Mean	IHO TVU calculated	IHO THU calculated	TVU in block	THU in block
Box GI01	85.34	85.61	85.475	0.81	2	0.22-0.24	0.82-0.94
Box GI02	80.34	80.8	80.57	0.78	2	0.22-0.24	0.79-0.91
Box GI03	84.62	84.93	84.775	0.81	2	0.22-0.24	0.82-0.94
Box GI04	82.88	83.19	83.035	0.80	2	0.22-0.25	0.81-0.92
Box GI05	89.57	90.08	89.825	0.84	2	0.22-0.25	0.86-0.97
Box GI06	87.29	87.89	87.59	0.83	2	0.22-0.24	0.84-0.93
Box GI07	79.83	80.19	80.01	0.78	2	0.22-0.25	0.79-0.9
Box GI08	85.94	86.26	86.1	0.82	2	0.22-0.24	0.83-0.94
Box GI09	85.99	86.3	86.145	0.82	2	0.22-0.25	0.84-0.94
Box GI10	88.06	88.29	88.175	0.83	2	0.22-0.25	0.84-0.96

www.geoxyz.eu Page 22 of 57

BNO UXO	Depth min	Depth max	Depth Mean	IHO TVU calculated	IHO THU calculated	TVU in block	THU in block
Box GI11	86.69	87.22	86.955	0.82	2	0.22-0.25	0.83-0.95
Box GI12	85.4	85.81	85.605	0.81	2	0.22-0.25	0.82-0.95
Box GI13	83.39	83.74	83.565	0.80	2	0.22-0.24	0.8-0.92
Box GI14	83.04	83.32	83.18	0.80	2	0.22-0.24	0.8-0.9
Box GI15	81.17	81.47	81.32	0.79	2	0.22-0.24	0.78-0.9
Box GI16	82.42	82.71	82.565	0.80	2	0.22-0.25	0.79-0.92
Box GI17	80.39	80.59	80.49	0.78	2	0.22-0.25	0.77-0.88
Box GI18	79.81	80.03	79.92	0.78	2	0.22-0.24	0.77-0.9
Box GI19	90.56	90.88	90.72	0.84	2	0.22-0.25	0.87-0.99
Box GI20	84.13	84.3	84.215	0.81	2	0.22-0.24	0.81-0.93

5.1.4 MBES deliverables

The MBES deliverables created as a result of the project are outlined in Table 5-4.

Table 5-4: Overview of the MBES deliverables

Deliverable	Format
RAW bathymetric data	QPD or bwxraw
De-spiked, motion and tidal corrected point cloud	ASCII
Bathymetric average values gridded surface	ASCII, RGB TIF, Encoded TIF or FLT
Bathymetric density (Hit Count) values gridded surface	ASCII, RGB TIF, Encoded TIF or FLT
Bathymetric standard deviation (95% confidence) values gridded surface	ASCII, RGB TIF, Encoded TIF or FLT
Bathymetric Total Horizontal Uncertainty values gridded surface	ASCII, Encoded TIF (LZW)
Bathymetric Total Vertical Uncertainty values gridded surface	ASCII, Encoded TIF (LZW)
Bathymetric slope values gridded surface	RGB TIF, Encoded TIF or FLT
Bathymetric Contour Lines	SHP
MB Targetlist	ASCII, SHP

5.2 SIDE SCAN SONAR

5.2.1 Data acquisition and settings

For side scan sonar data acquisition, the acquisition parameters are listed in Table 5-5. The number of lines acquired per trackplot were 101.

Table 5-5: SSS acquisition parameters

Item	Setting
Survey speed:	~4 knots
Steered node:	Yes

www.geoxyz.eu Page 23 of 57

Item	Setting
Frequency:	Dual frequency with the high frequency of at least 600 kHz
Range:	20 m range for both LF and HF
Mode:	HDM
Flying Altitude:	5-10 % of range
Time Stamp:	ZDA from QINSy
Navigation:	USBL position / fixed layback
Heading:	Internal compass / bearing to tow point / determined from positioning verification
Nadir Filler:	No
Data Format:	JSF / XTF
Line spacing:	8 m

5.2.2 Overview of the methodology

Side scan sonar data (.JSF files) was recorded using Edgetech Discover. An acquisition log was kept of all settings and other observations. Quality Control (QC) was performed offline where the dataset is checked for overall quality, coverage, artefacts, and positioning.

The HF and LF SSS data were processed using the Chesapeake SonarWiz software following the workflow outlined in Figure 5-3.

www.geoxyz.eu Page 24 of 57

DATA FLOW FOR STANDARD SSS PROCESSING

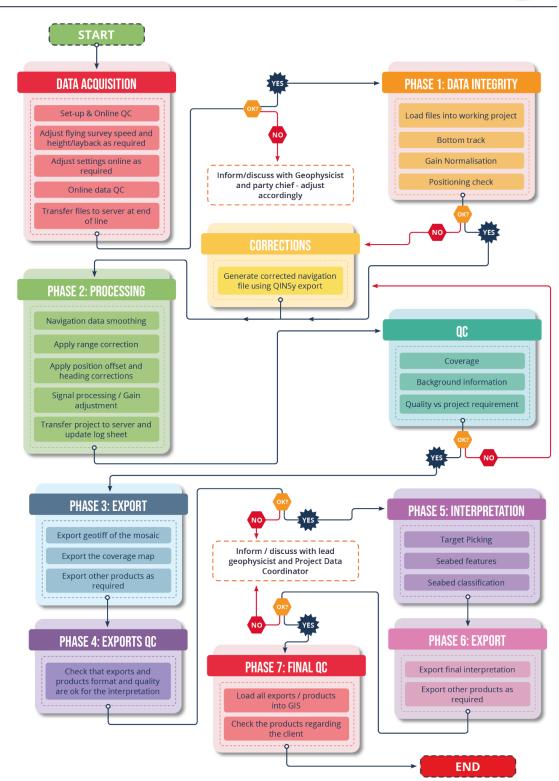


Figure 5-3: SSS processing workflow

www.geoxyz.eu Page 25 of 57

Navigation data from the QINSy logfile was injected into the sonar files using Nav Injector Pro, the heading used was a calculated bearing-to-towpoint from QINSy and the X and Y co-ordinates were Kalman filtered to provide the most accurate positioning of the SSS fish. The SSS data were then loaded into SonarWiz, the seabed was bottom-tracked, minor heading corrections were applied to the navigation where needed and any spikes smoothed out using Zedit. The Empirical Gain Normalisation (EGN) was applied to normalise the signal return along the record, in order to clarify changes in the acoustic reflectivity of the seabed and the presence of any morphological features. A de-stripe filter was applied, whenever necessary, to create a well-balanced sonar image.

5.2.3 Data quality assessment

For SSS data 72 lines have been acquired with run-in/run out length of 150 metres. The data was of high quality, with no environmental artefacts (e.g., pitch effects, thermoclines, etc.). Despite the presence of currents, SSS positioning remained accurate and within the 2 m tolerance allowed for this project. The high definition of the data enabled the identification of targets as small as 0.5 m. Boulder fields were identified in some boxes, causing the reallocation of those boxes to avoid as many boulders as possible.

An example of data quality and observed boulder field is presented in Figure 5-4.

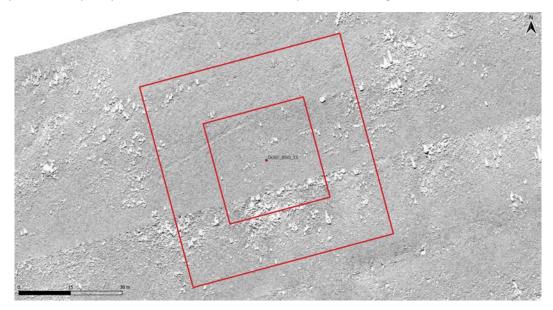


Figure 5-4: SSS mosaic along Box BNO GI15

5.2.4 SSS deliverables

The SSS deliverables created as a result of the project are outlined in Table 5-6.

Table 5-6: Overview of the SSS deliverables

Deliverable	Format
Raw SSS data	JSF, HF XTF
Processed SSS data	HF XTF
SSS Individual mosaic per line	RGB TIF
SSS mosaic	RGB TIF
SSS Targetlist	ASCII, Excel

www.geoxyz.eu Page 26 of 57

Deliverable	Format
Seabed Features, Lines, Polygons	SHP
Seabed Sediments Primary	SHP

5.3 MAGNETOMETER

5.3.1 Data acquisition and settings

Magnetometer data was acquired following specifications listed in Table 5-7 below.

The original line plan for the run-in/run-out length of the UXO surveys was 52 m, but it was extended 100 m each side to acquire more data in case the original boxes contained any pUXO and box relocation was requested. This involved increasing the line lengths to 250 m to provide an adequate alternative clearance area. Number of MAG lines acquired were 330.

To calibrate MAG data, surrogate item of 25 kg ferrous magnetic object was used. This type of item has been selected, as according to previous studies, the smallest possible UXO threat would be 26 kg in size, so this allows for threat this size to be discovered.

System type

TVG frame & 2 x Geometrics G882 (soft towed) x 2

Survey speed

4.2 knots

Positioning

HiPAP 351 USBL

Magnetometer altitude

2.0 m - 3.5 m

Frequency

10 Hz

Table 5-7: Magnetometer system settings

The MAG project specifications are listed in Table 5-8.

Table 5-8: Magnetometer specifications

Item	Specification
Minimum sampling rate	10 Hz
Max towing altitude	4 m
Operating range	20 000 to 100 000 Nanoteslas (nT)
Counter sensitivity	<0.004 nT/pHz rms
Gaps	<5 m length by 3 m in width

5.3.2 Overview of the methodology

The processing and target selection involved several steps:

- Manual or filter-based removal of spikes in MAG data.
- Smooth navigation using a median filter of 50 values, with manual removal of spikes if necessary.
- Calculation of the background field using a set of standard NL-filters: starting from 30 fiducials width and a tolerance of 0.5 nT to a window width of 2 fiducials and a tolerance of 0.0375 nT.
- Residual calculation by subtracting the background.
- Refining anomalies on the profiles.

www.geoxyz.eu Page 27 of 57

- Selection of all targets above the 3 nT peak-to-peak threshold.
- Target characteristics determined by the minimum to maximum on the residual signal, zero crossing for in-line width, and type based on residual (negative monopole, positive monopole, dipole).

To minimize geological influences, the geological background value was considered and removed where possible within the limited window used for total field value background calculation. The workflow specified that a non-linear filter that should eliminate most large-scale geological effects. Short-wave geological signals (<40 m) were significantly reduced from the target list based on the magnetic target threshold. Larger (suspected) geological targets were included in the list, referencing 'potential geology' in the comment section.

The quality of the magnetic data was influenced by weather conditions, with higher swells contributing to increased noise. Efforts were made to keep this noise below 2 nT. Lines displaying excessive noise were flagged for rejection and a potential re-run.

Figure 5-5 outlines the magnetometer processing workflow.

www.geoxyz.eu Page 28 of 57

DATA FLOW FOR STANDARD MAG PROCESSING

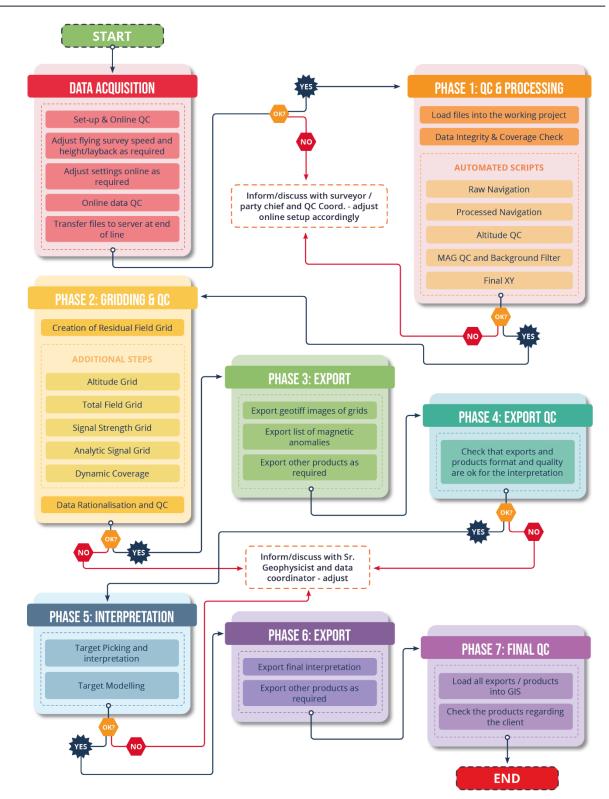


Figure 5-5: MAG processing workflow

www.geoxyz.eu Page 29 of 57

5.3.3 Data quality assessment

For MAG data 234 lines have been acquired with run-in/run out length of 150 metres. Magnetometer data quality was good overall. When necessary, the line was fully rejected. Altitude was quite stable and mainly within 1 and 4 m. As dynamic coverage has been used, very few infills have been necessary to cover the boxes. Some anomalies were seen inside and in the surroundings of the boxes leading to the reallocation of almost all boxes.

The MAG position could not be verified during the EVT, as the surrogate was not detected on the SSS and MBES. However constant monitoring was performed during the acquisition, a contact has been identified on all three sensors confirming that the position was good and within the project tolerance of 2 m (Figure 5-6).

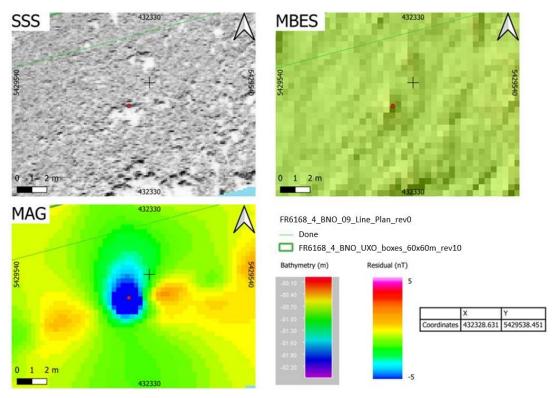


Figure 5-6: Example of position accuracy within all sensors

An example of the residual data quality is displayed in Figure 5-7.

www.geoxyz.eu Page 30 of 57

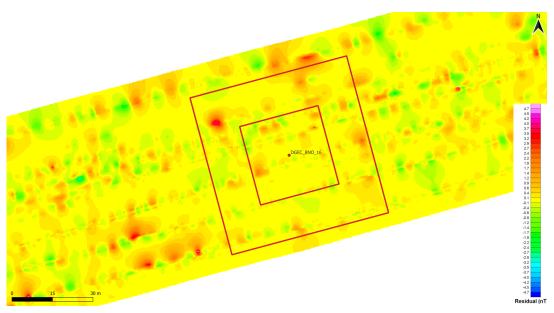


Figure 5-7: Example of residual data along GNO GI16 box

5.3.4 MAG deliverables

The MAG deliverables created as a result of the project are outlined in Table 5-9.

Table 5-9: Overview of the MAG deliverables

Deliverable	Format
RAW magnetometric data	ASCII
Processed magnetometric data	ASCII
Altitude Grid	ENCODED TIF OR FLT, RGB TIF
Signal Strength Grid	ENCODED TIF OR FLT, RGB TIF
Total Field Grid	ENCODED TIF OR FLT, RGB TIF
Residual Signal Grid	ENCODED TIF OR FLT, RGB TIF
Analytic Signal Grid	ENCODED TIF OR FLT, RGB TIF
MAG Targetlist	ASCII, SHP, Excel

www.geoxyz.eu Page 31 of 57

6 RESULTS

6.1 OVERVIEW

The results of the survey per ALARP geotechnical box have been presented in APPENDIX A. These boxes comprise an area of 30 x 30 metres. Each of the charts in the appendix contains a bathymetric overview with targets, seabed sediment classification, HF side scan mosaic with features and targets, residual MAG grid and the location of the shown ALARP geotechnical box.

There were 478 targets detected in total. Out of those, 22 were detected as MBES target, 455 as SSS targets and one target was detected on MAG dataset.

ALARP certificates were issued for this survey and can be found attached to this report (APPENDIX B).

6.2 BATHYMETRY

The bathymetric data was acquired in a 30-centimetre resolution and has been shown in the top-left chartlet of the charts found in APPENDIX A.

Within each of the survey boxes, the bathymetry ranges vary within a few metres.

The deepest point of the surveyed boxes is located in the BNO_GI#19, lying at a depth of -90.88 m LAT. The shallowest point is located in the BNO_GI#18, lying at a depth of -79.81 m LAT.

6.3 SEABED SEDIMENTS AND MORPHOLOGY

In terms of sedimentation, only sand was present. Top-right chartlet in APPENDIX A shows the sedimentation classification of each surveyed box.

In total, 23 seabed features were noted: 18 high density boulder fields, one sand ripple and four medium density boulder field. Their number and distribution are shown in Table 6-1, while their exact location is shown in on the lower-left chartlet in APPENDIX A.

Table 6-1: Number and distribution of seabed features

	Number of polygonal seabed features			
BNO UXO box	Medium density boulder field	High density boulder field	Ripples	
BNO_GI#01	0	0	1	
BNO_GI#02	0	1	0	
BNO_GI#03	0	2	0	
BNO_GI#04	1	0	0	
BNO_GI#05	0	1	0	
BNO_GI#06	0	1	0	
BNO_GI#07	0	1	0	
BNO_GI#08	1	0	0	
BNO_GI#09	0	2	0	

www.geoxyz.eu Page 32 of 57

	Number of polygonal seabed features			
BNO UXO box	Medium density boulder field	High density boulder field	Ripples	
BNO_GI#10	0	1	0	
BNO_GI#11	0	1	0	
BNO_GI#12	0	2	0	
BNO_GI#13	0	0	0	
BNO_GI#14	1	0	0	
BNO_GI#15	0	1	0	
BNO_GI#16	0	1	0	
BNO_GI#17	0	1	0	
BNO_GI#18	0	1	0	
BNO_GI#19	1	2	0	
BNO_GI#20	0	1	0	

6.4 CONTACTS AND DEBRIS

There were 419 targets detected in total. Out of those, 22 were detected as MBES target, 396 as SSS targets and one target was detected on MAG dataset.

Their number and distribution are shown in Table 6-2, while their exact location is shown in on the upper-left and lower-left chartlet in APPENDIX A.

Table 6-2: Number and distribution of MBES, SSS and MAG targets

BNO UXO box	Number of SSS targets	Number of MBES targets	Number of MAG targets
	Boulder	Boulder	Dipole
BNO_GI#01	7	0	0
BNO_GI#02	37	0	0
BNO_GI#03	18	0	0
BNO_GI#04	12	0	0
BNO_GI#05	12	4	0
BNO_GI#06	20	2	0
BNO_GI#07	4	0	0
BNO_GI#08	6	0	0
BNO_GI#09	23	0	0
BNO_GI#10	23	2	0
BNO_GI#11	44	0	0
BNO_GI#12	25	6	0
BNO_GI#13	1	0	0
BNO_GI#14	29	4	0

www.geoxyz.eu Page 33 of 57

BNO UXO box	Number of SSS targets	Number of MBES targets	Number of MAG targets
	Boulder	Boulder	Dipole
BNO_GI#15	14	1	0
BNO_GI#16	15	2	0
BNO_GI#17	52	0	0
BNO_GI#18	30	1	1
BNO_GI#19	9	0	0
BNO_GI#20	15	0	0

www.geoxyz.eu Page 34 of 57

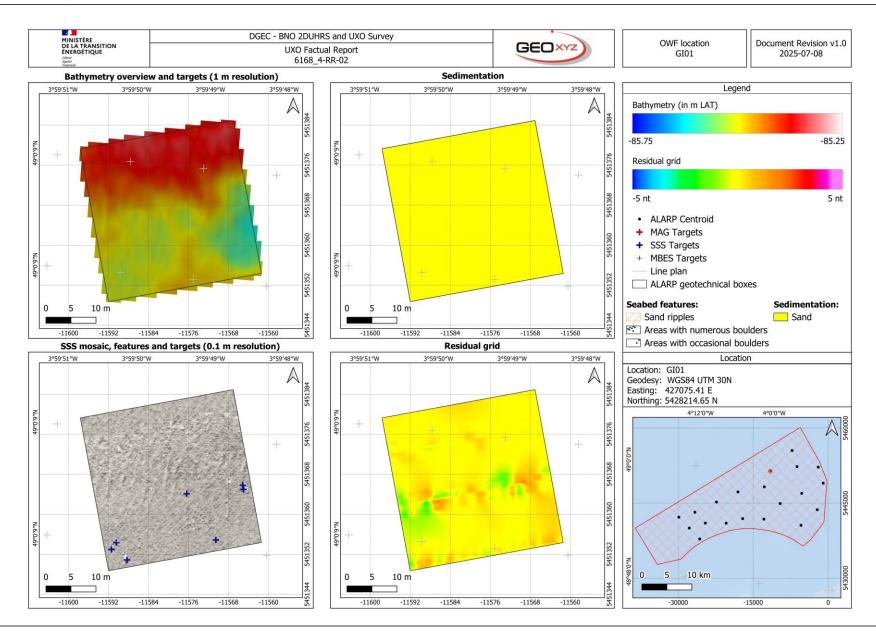
7 CONCLUSION

A UXO survey was conducted for twenty 30 x 30-metre survey boxes within the BNO area. The survey comprised the acquisition of multibeam bathymetry (MBES), side scan sonar (SSS) and magnetometer (MAG) data. The survey vessel Geo Ocean IX (GOIX) was utilised for the acquisition. The survey was conducted between 22/05/2025 and 16/06/2025. ALARP certificates were issued on 26/06/2025.

The bathymetry within each of the survey boxes vary within a few metres. The deepest point of the surveyed boxes is located in the BNO_GI#19, lying at a depth of -90.88 m LAT. The shallowest point is located in the BNO_GI#18, lying at a depth of -79.81 m LAT.

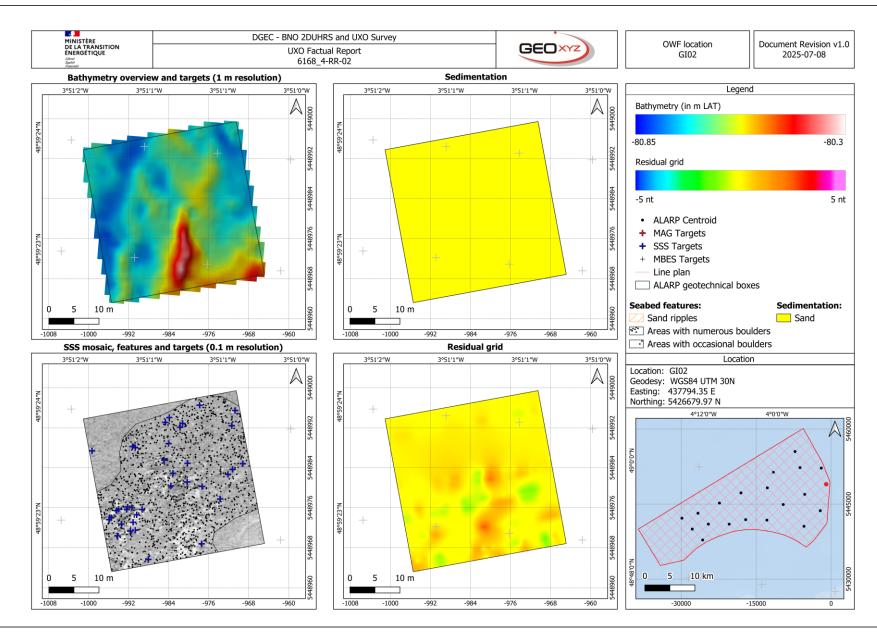
Sand was the only type of sedimentation present.

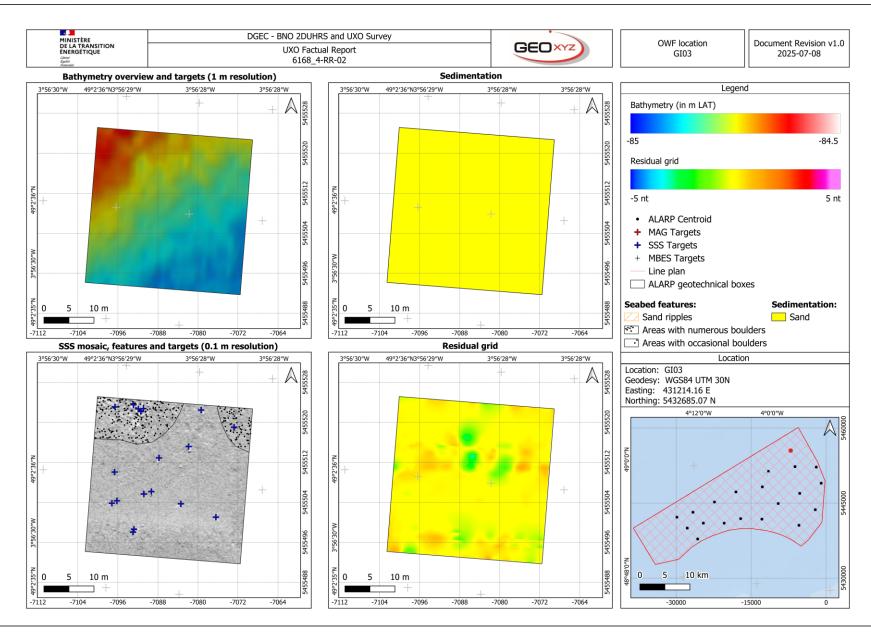
In total, 23 seabed features were noted: 18 high density boulder fields, one sand ripple and four medium density boulder field.

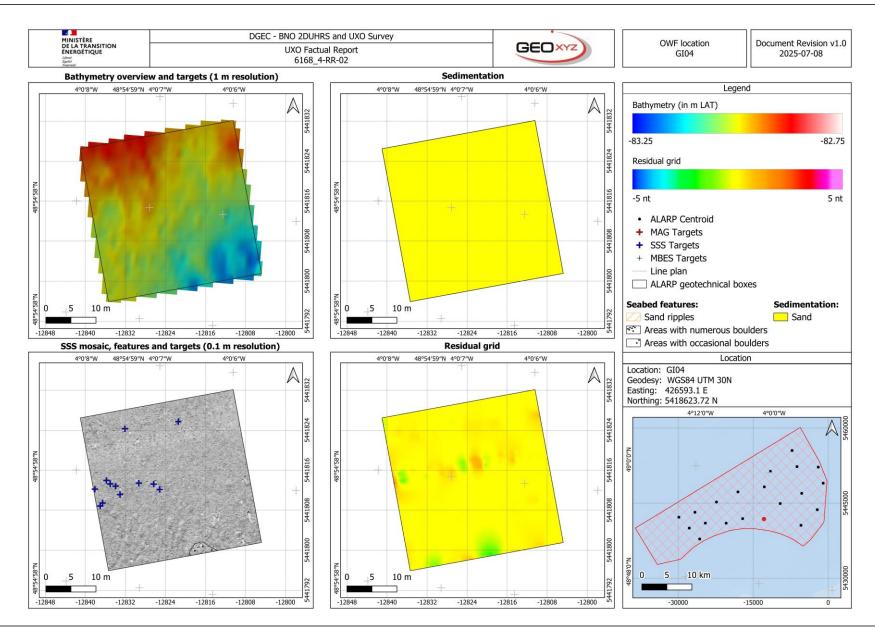

There were 419 targets detected in total. Out of those 22 were detected as MBES target, 396 as SSS targets and one target was detected on MAG dataset.

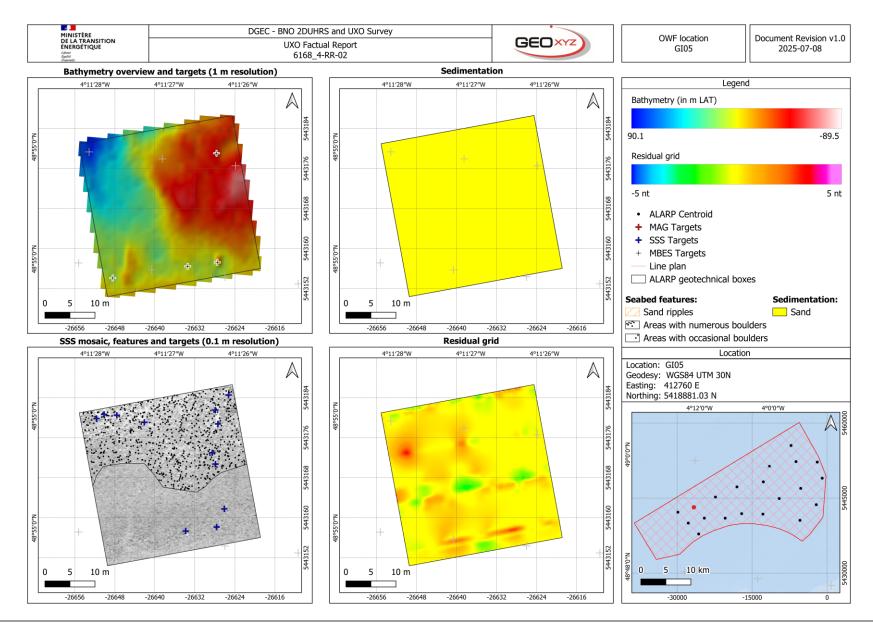
www.geoxyz.eu Page 35 of 57

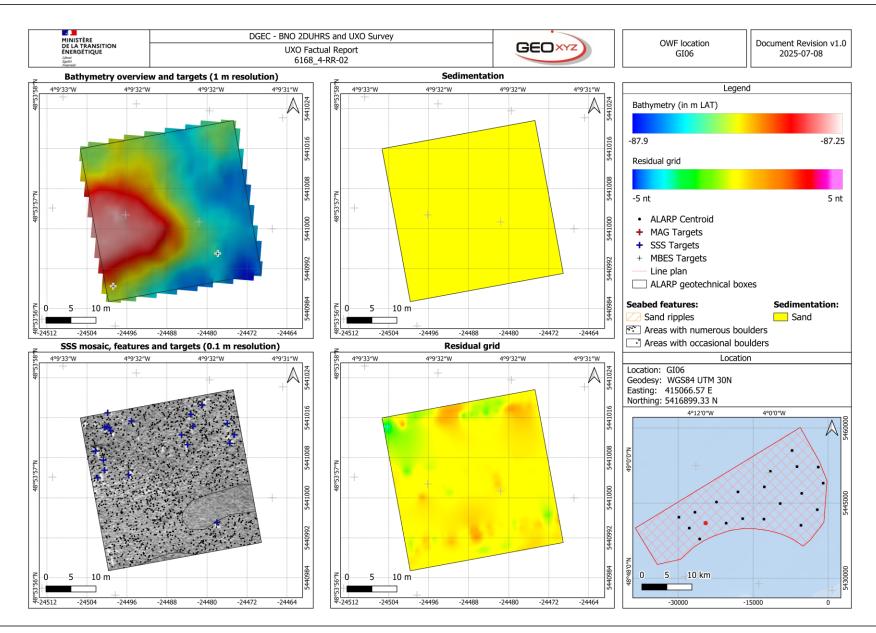
APPENDIX A. BNO UXO BOX CHARTS

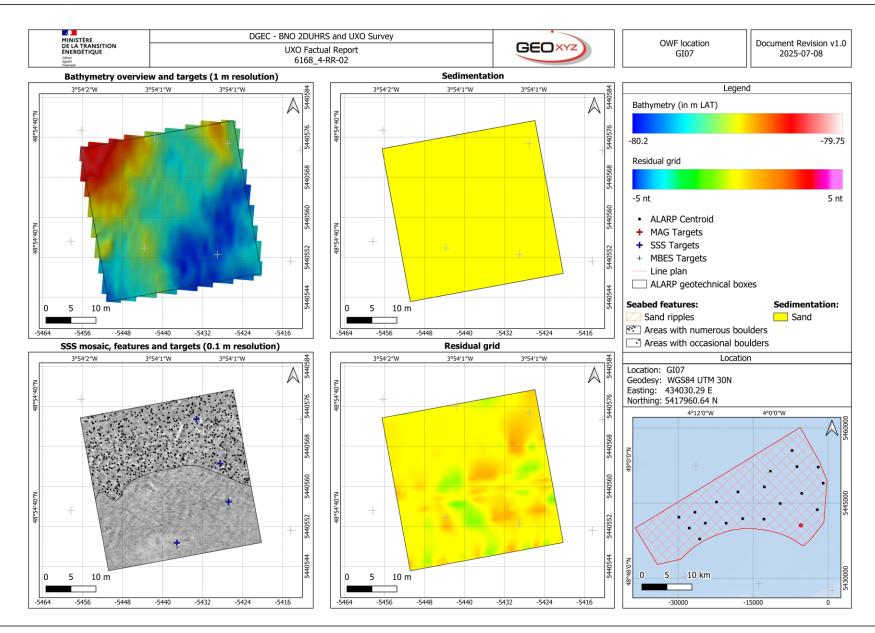

www.geoxyz.eu Page 36 of 57

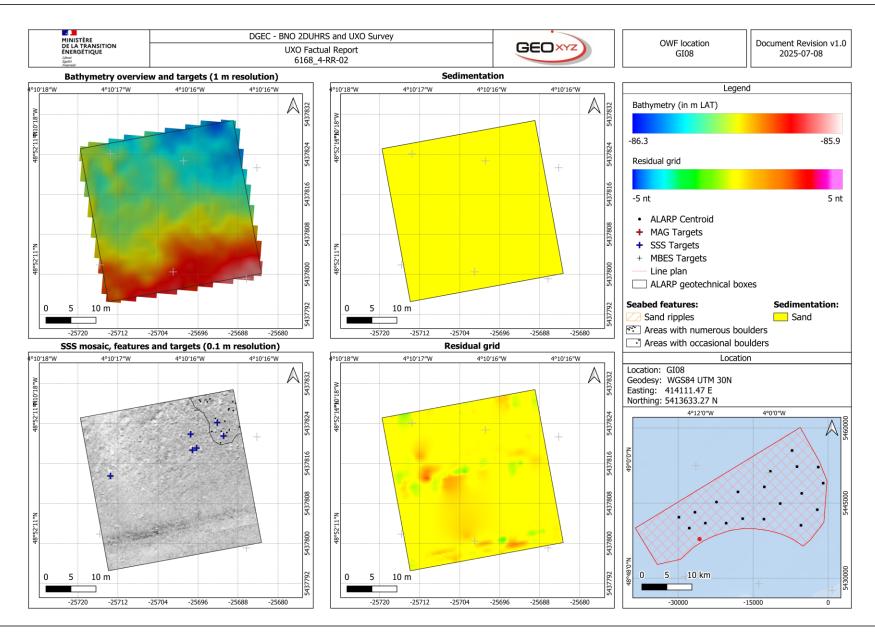

www.geoxyz.eu Page 37 of 57

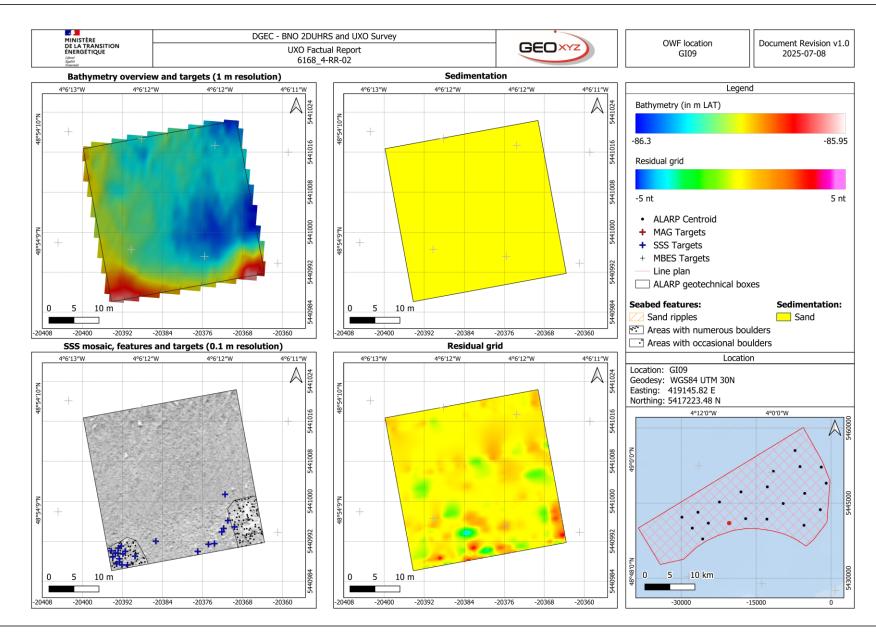

www.geoxyz.eu Page 38 of 57

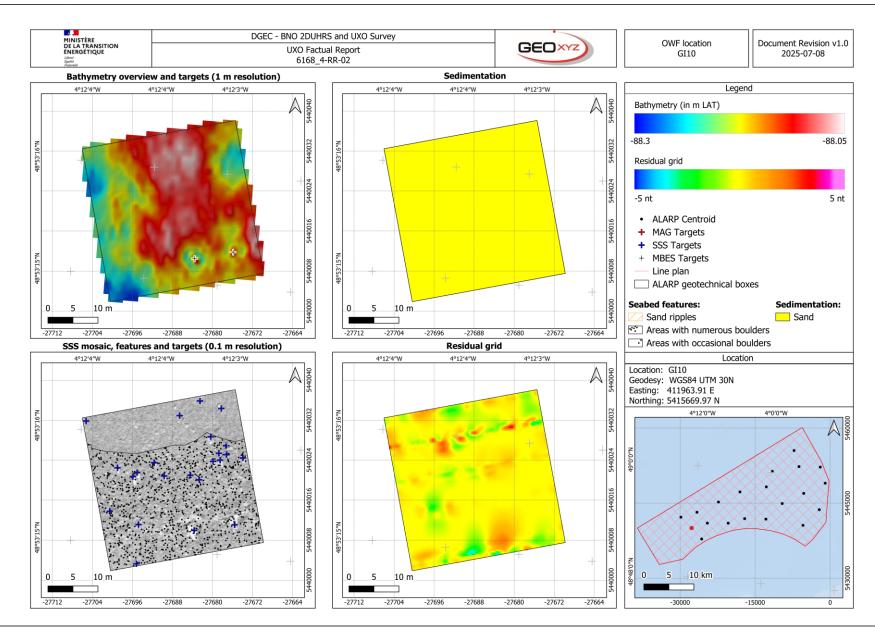

www.geoxyz.eu Page 39 of 57

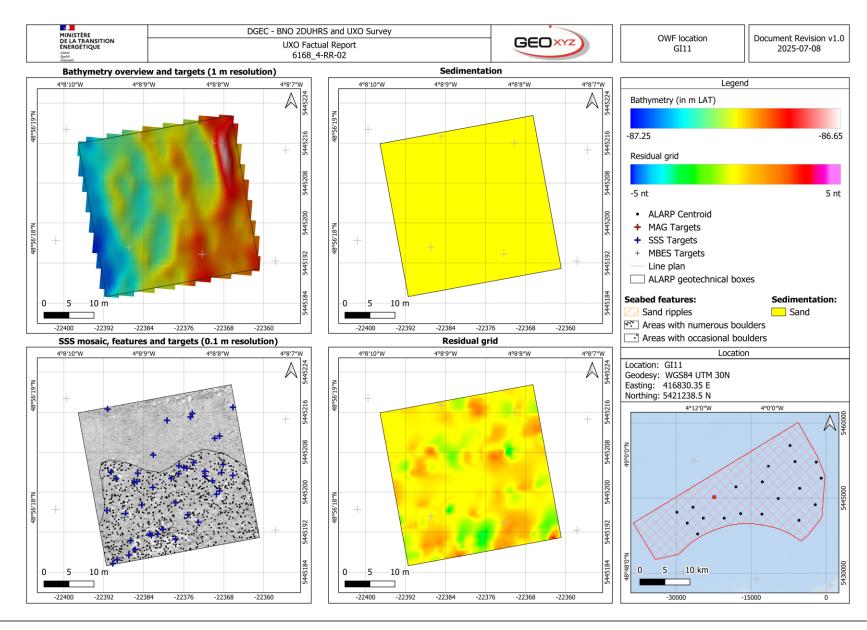

www.geoxyz.eu Page 40 of 57

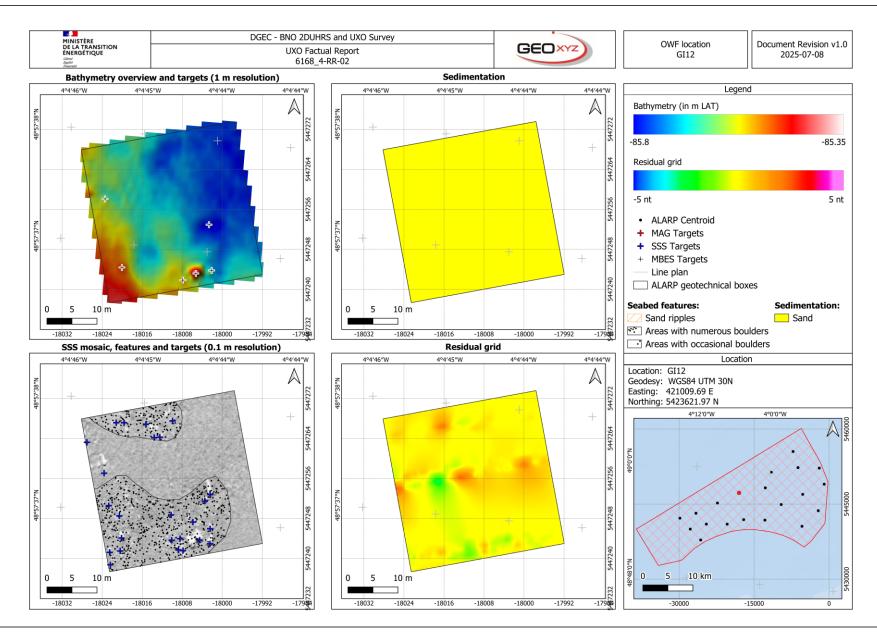

www.geoxyz.eu Page 41 of 57

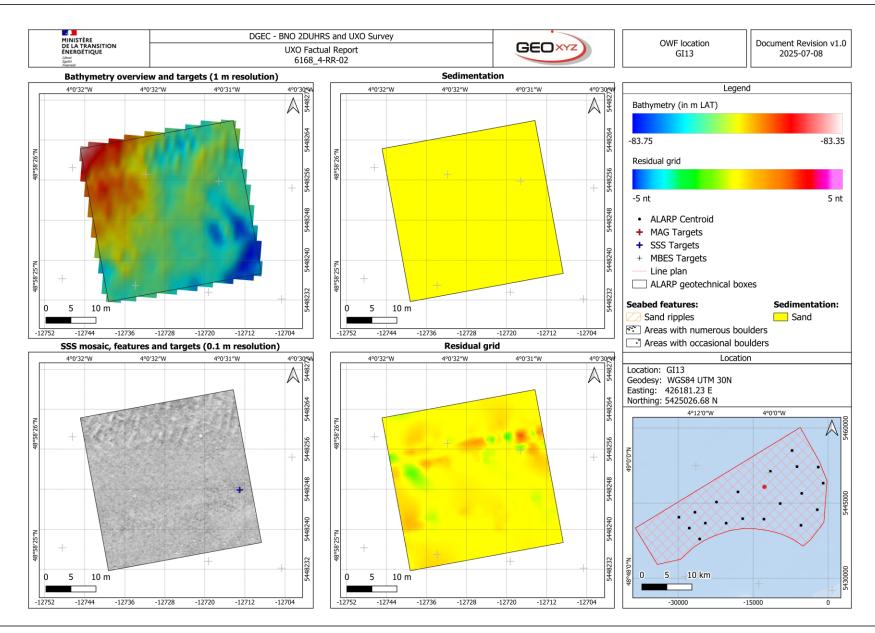

www.geoxyz.eu Page 42 of 57


www.geoxyz.eu Page 43 of 57

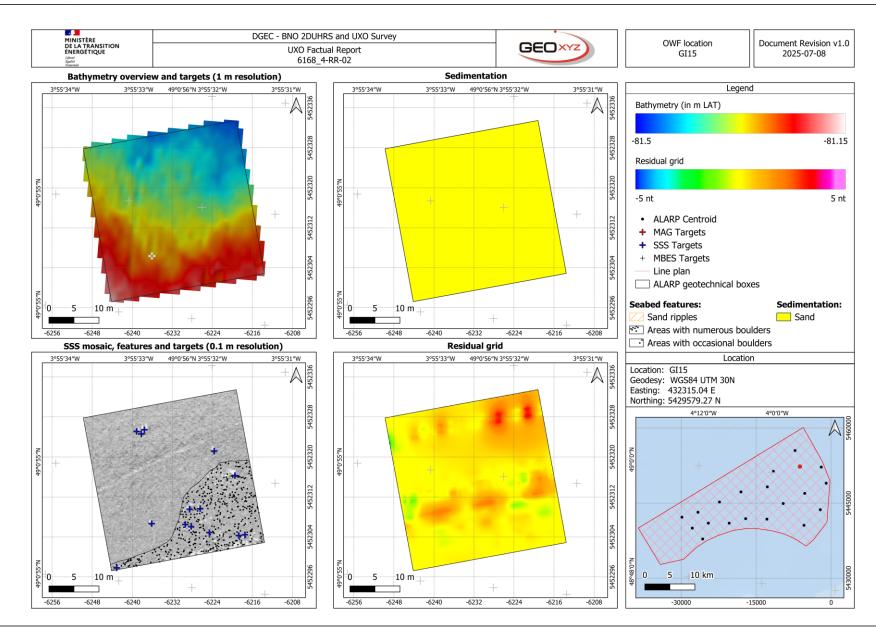

www.geoxyz.eu Page 44 of 57

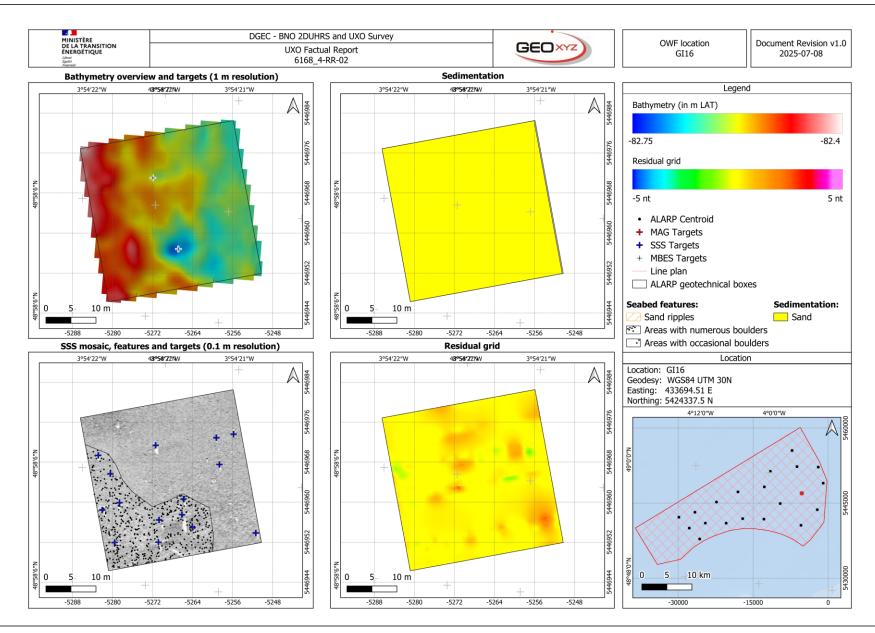

www.geoxyz.eu Page 45 of 57

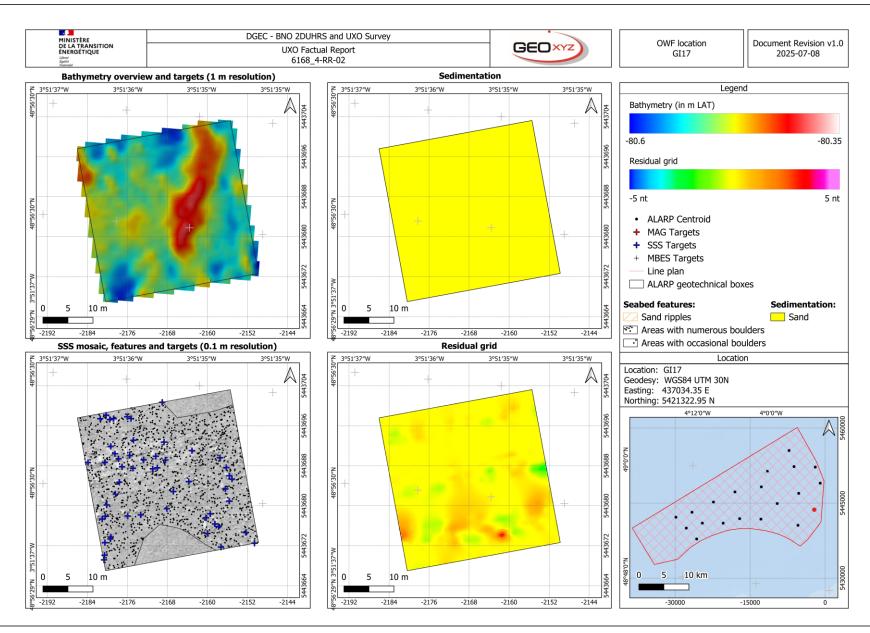

www.geoxyz.eu Page 46 of 57

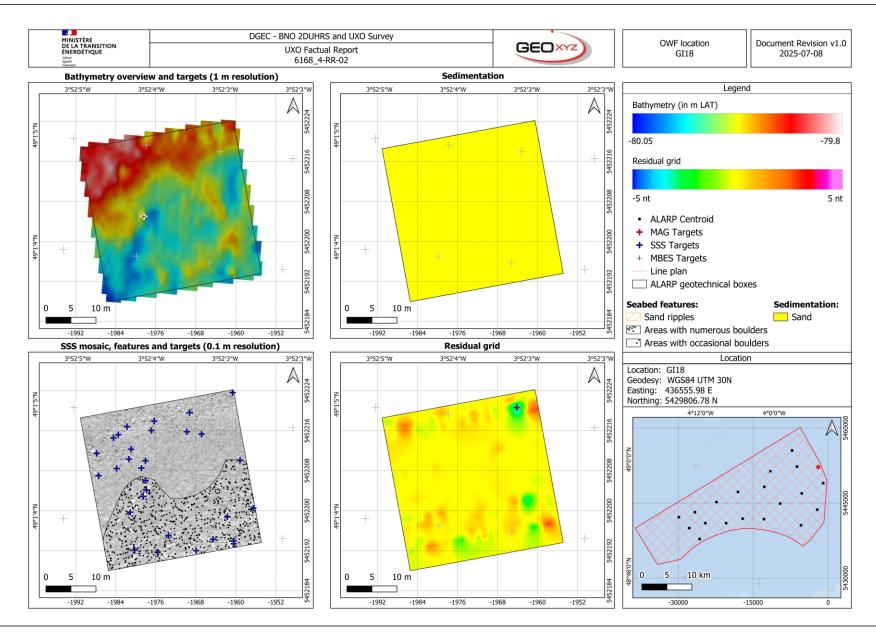

www.geoxyz.eu Page 47 of 57

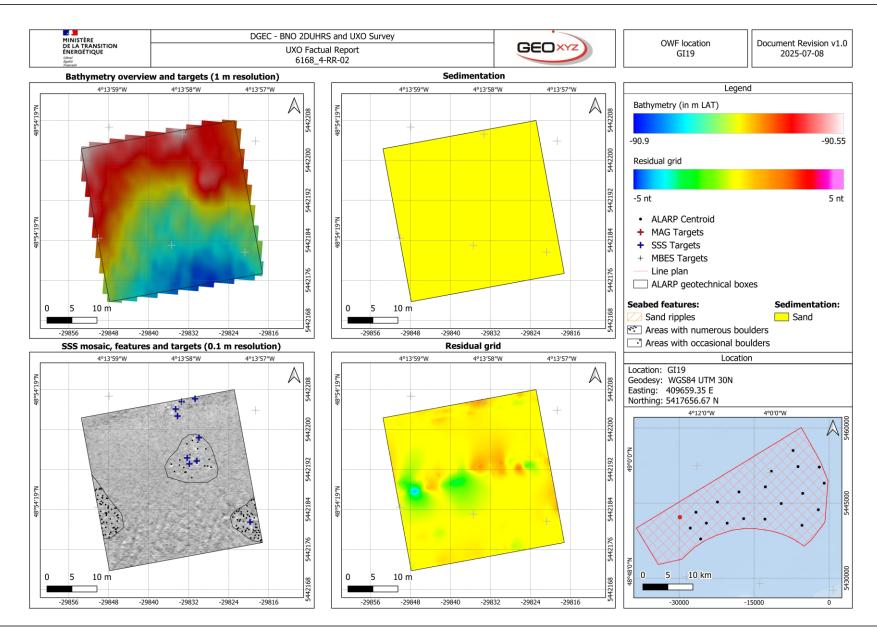

www.geoxyz.eu Page 48 of 57

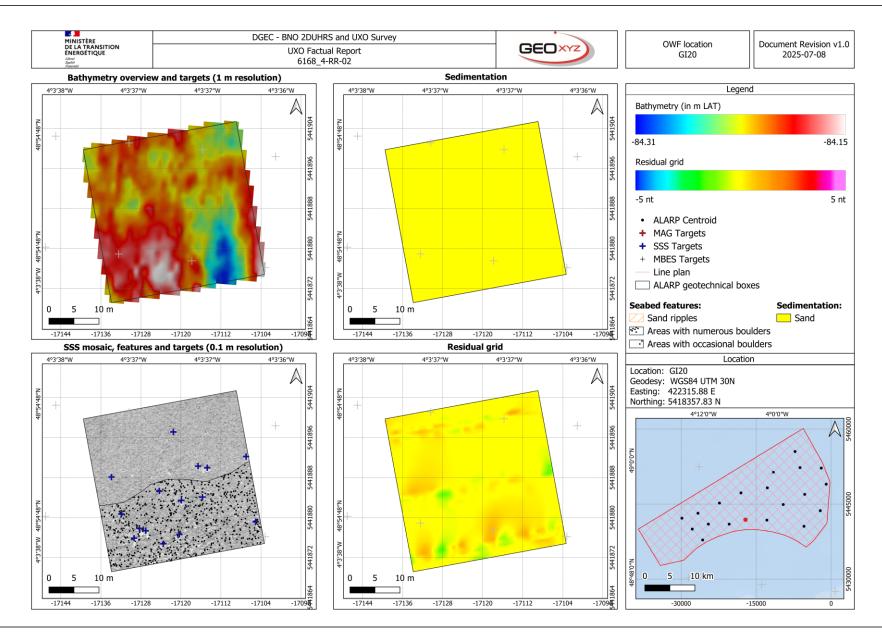

www.geoxyz.eu Page 49 of 57


www.geoxyz.eu Page 50 of 57


www.geoxyz.eu Page 51 of 57


www.geoxyz.eu Page 52 of 57


www.geoxyz.eu Page 53 of 57


www.geoxyz.eu Page 54 of 57

www.geoxyz.eu Page 55 of 57

www.geoxyz.eu Page 56 of 57

APPENDIX B. ALARP CERTIFICATES

www.geoxyz.eu Page 57 of 57